Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 10 (2023)

Experimental Validation Through a Parallel Computation Algorithm for Evaluation Uncertainty of the Mathematical Model of Direct Expansion Solar Assisted Heat Pump

DOI
https://doi.org/10.31875/2410-2199.2023.10.2
Submitted
May 16, 2023
Published
2023-05-16

Abstract

This paper presents the development of a mathematical model for a direct-expansion solar-assisted heat pump (DX-SAHP) operating in steady-state. The mathematical model was implemented using the scientific software EES and using a code written in Python. It was utilized a lumped parameter model for the heat exchangers and a semi-empirical model for the compressor. The mathematical model was validated using experimental data of a DX-SAHP running with R134a. Two hundred simulations were made combining different correlations for estimating the convective heat transfer coefficient in the evaporator/collector. The Mean Absolute Deviation (MAD) and the Mean Deviation (MD) between the theoretical and experimental values for the COP were 2.6±1.8 % and 0.9±1.8 %, respectively. The MAD and MD between the discharge temperature were 1.56±0.16 % and -1.45±0.16 %. The mean difference between the results using EES and Python were 1.4 %. The use of Python with parallel computing for uncertainty analyses, reduced the simulation time in 88 % if compared with EES. The model in Python is available as open-source through the platform Google Colaboratory.

References

  1. Kong X, Yang Y, Zhang M, Li Y, Li J. Experimental investigation on a direct-expansion solar-assisted heat pump water heater using r290 with micro-channel heat transfer technology during the winter period. International Journal of Refrigeration 2020; 113: 38-48. https://doi.org/10.1016/j.ijrefrig.2020.01.019
  2. Duarte WM, Rabelo SN, Paulino TF, Pabón JJ, Machado L. Experimental performance analysis of a CO2 directexpansion solar assisted heat pump water heater. International Journal of Refrigeration 2021; 125: 52-63. https://doi.org/10.1016/j.ijrefrig.2021.01.008
  3. Humia GM, Duarte WM, Pabon JJG, de Freitas Paulino T, Machado L. Experimental study and simulation model of a direct expansion solar assisted heat pump to CO2 for water heating: Inventory, coefficient of performance and total equivalent warming impact. Solar Energy 2021; 230: 278-97. https://doi.org/10.1016/j.solener.2021.10.018
  4. Xia L, Ma Z, Kokogiannakis G, Wang Z, Wang S. A model-based design optimization strategy for ground source heat pump systems with integrated photovoltaic thermal collectors. Applied Energy 2018; 214: 178-90. https://doi.org/10.1016/j.apenergy.2018.01.067
  5. Qi D, Pu L, Ma Z, Xia L, Li Y. Effects of ground heat exchangers with different connection configurations on the heating performance of gshp systems. Geothermics 2019; 80: 20-30. https://doi.org/10.1016/j.geothermics.2019.02.002
  6. Ma Z, Xia L, Gong X, Kokogiannakis G, Wang S, Zhou X. Recent advances and development in optimal design and control of ground source heat pump systems. Renewable and Sustainable Energy Reviews 2020; 131: 110001. https://doi.org/10.1016/j.rser.2020.110001
  7. Li H, Campana PE, Tan Y, Yan J. Feasibility study about using a stand-alone wind power driven heat pump for space heating. Applied Energy 2018; 228: 1486 -98. https://doi.org/10.1016/j.apenergy.2018.06.146
  8. Wu J, Ma Y. Experimental study on performance of a biogas engine driven air source heat pump system powered by renewable landfill gas. International Journal of Refrigeration 2016; 62: 19-29. https://doi.org/10.1016/j.ijrefrig.2015.08.023
  9. Buker M, Riffat SB. Solar assisted heat pump systems for low temperature water heating applications: A systematic review. Renewable and Sustainable Energy Reviews 2016; 55: 399 - 413. https://doi.org/10.1016/j.rser.2015.10.157
  10. Faria RN, Nunes RO, Koury RNN, Machado L. Dynamic modeling study for a solar evaporator with expansion valve assembly of a transcritical CO2 heat pump. International Journal of Refrigeration 2016; 64: 203-13. https://doi.org/10.1016/j.ijrefrig.2016.01.004
  11. de Oliveira RN, Faria RN, Antonanzas-Torres F, Machado L, Koury RNN. Dynamic model and experimental validation for a gas cooler of a CO2 heat pump for heating residential water. Science and Technology for the Built Environment 2016; 22(1): 30-40. https://doi.org/10.1080/23744731.2015.1070647
  12. Scarpa F, Tagliafico LA. Exploitation of humid air latent heat by means of solar assisted heat pumps operating below the dew point. Applied Thermal Engineering 2016; 100: 820 -8. https://doi.org/10.1016/j.applthermaleng.2015.12.077
  13. Paulino TF, Oliveira RN, Maia AAT, Palm B, Machado L. Modeling and experimental analysis of the solar radiation in a CO2 direct-expansion solar-assisted heat pump. Applied Thermal Engineering 2019; 148: 160 -72. https://doi.org/10.1016/j.applthermaleng.2018.11.045
  14. Chyng J, Lee C, Huang B. Performance analysis of a solar-assisted heat pump water heater. Solar Energy 2003; 74(1): 33 - 44. https://doi.org/10.1016/S0038-092X(03)00110-5
  15. Torres-Reyes E, Gortari JC. Optimal performance of an irreversible solar-assisted heat pump. Exergy, An International Journal 2001; 1(2): 107 -11. https://doi.org/10.1016/S1164-0235(01)00016-4
  16. Hawlader M, Chou S, Ullah M. The performance of a solar assisted heat pump water heating system. Applied Thermal Engineering 2001; 21(10): 1049 -65. https://doi.org/10.1016/S1359-4311(00)00105-8
  17. Ito S, Miura N, Wang K. Performance of a heat pump using direct expansion solar collectors. Solar Energy 1999; 65: 189-96. https://doi.org/10.1016/S0038-092X(98)00124-8
  18. Chaturvedi S, Chen D, Kheireddine A. Thermal performance of a variable capacity direct expansion solar-assisted heat pump. Energy Conversion and management 1998; 39(3): 181-91. https://doi.org/10.1016/S0196-8904(96)00228-2
  19. Chaturvedi SK, Shen JY. Thermal performance of a direct expansion solar-assisted heat pump. Solar Energy 1984; 33(2): 155 -62. https://doi.org/10.1016/0038-092X(84)90233-0
  20. ASME. Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer: An American National Standard. American Society of Mechanical Engineers; 2009.
  21. BIPM, IEC, IFCC, ILAC, IUPAC, IUPAP, et al. Evaluation of measurement data-Guide for the expression of uncertainty in measurement. JCGM 100: 2008. 2008.
  22. Zhang Y, Akkurt N, Yuan J, Xiao Z, Wang Q, Gang W. Study on model uncertainty of water source heat pump and impact on decision making. Energy and Buildings 2020; 216: 109950. https://doi.org/10.1016/j.enbuild.2020.109950
  23. Zhang Y, Cui C, Yuan J, Zhang C, Gang W. Quantification of model uncertainty of water source heat pump and impacts on energy performance. In: IOP Conference Series: Earth and Environmental Science; vol. 238. IOP Publishing; 2019, p. 012067. https://doi.org/10.1088/1755-1315/238/1/012067
  24. Frutiger J, Zühlsdorf B, Elmegaard B, Abildskov J, Sin G. Reverse engineering of working fluid selection for industrial heat pump based on monte carlo sampling and uncertainty analysis. Industrial & Engineering Chemistry Research 2018; 57(40): 13463-77. https://doi.org/10.1021/acs.iecr.7b04607
  25. Coppitters D, De Paepe W, Contino F. Robust design optimization of a photovoltaic-battery-heat pump system with thermal storage under aleatory and epistemic uncertainty. Energy 2021; 229: 120692. https://doi.org/10.1016/j.energy.2021.120692
  26. Moarry DP. Modeling and operation of ground source heat pumps in electricity markets considering uncertainty. Ph.D. thesis; University of Waterloo; 2022.
  27. Nielsen MG, Morales JM, Zugno M, Pedersen TE, Madsen H. Economic valuation of heat pumps and electric boilers in the danish energy system. Applied Energy 2016; 167: 189-200. https://doi.org/10.1016/j.apenergy.2015.08.115
  28. Chow TT, Bai Y, Fong K, Lin Z. Analysis of a solar assisted heat pump system for indoor swimming pool water and space heating. Applied energy 2012; 100: 309-17. https://doi.org/10.1016/j.apenergy.2012.05.058
  29. Panaras G, Mathioulakis E, Belessiotis” V. Investigation of the performance of a combined solar thermal heat pump hot water system. Solar Energy 2013; 93: 169 -82. https://doi.org/10.1016/j.solener.2013.03.027
  30. Magraner T, Montero A, Quilis S, Urchueguía J. Comparison between design and actual energy performance of a hvac-ground coupled heat pump system in cooling and heating operation. Energy and buildings 2010; 42(9): 1394-401. https://doi.org/10.1016/j.enbuild.2010.03.008
  31. Fan R, Gao Y, Hua L, Deng X, Shi J. Thermal performance and operation strategy optimization for a practical hybrid ground-source heat-pump system. Energy and Buildings 2014; 78: 238-47. https://doi.org/10.1016/j.enbuild.2014.04.041
  32. Pu L, Qi D, Xu L, Li Y. Optimization on the performance of ground heat exchangers for gshp using kriging model based on moga. Applied Thermal Engineering 2017; 118: 480-9. https://doi.org/10.1016/j.applthermaleng.2017.02.114
  33. Pärisch P, Mercker O, Warmuth J, Tepe R, Bertram E, Rockendorf G. Investigations and model validation of a ground-coupled heat pump for the combination with solar collectors. Applied Thermal Engineering 2014; 62(2): 375- 81. https://doi.org/10.1016/j.applthermaleng.2013.09.016
  34. Koury R, Machado L, Ismail K. Numerical simulation of a variable speed refrigeration system. International journal of refrigeration 2001; 24(2): 192-200. https://doi.org/10.1016/S0140-7007(00)00014-1
  35. Daviran S, Kasaeian A, Golzari S, Mahian O, Nasirivatan S, Wongwises S. A comparative study on the performance of hfo-1234yf and hfc-134a as an alternative in automotive air conditioning systems. Applied Thermal Engineering 2017; 110: 1091-100. https://doi.org/10.1016/j.applthermaleng.2016.09.034
  36. D’Agaro P, Coppola M, Cortella G. Field tests, model validation and performance of a co2 commercial refrigeration plant integrated with hvac system. International Journal of Refrigeration 2019; 100: 380-91. https://doi.org/10.1016/j.ijrefrig.2019.01.030
  37. Tsui C, Yan AY, Lai H. Speeding up monte carlo computations by parallel processing using a gpu for uncertainty evaluation in accordance with gum supplement 2. NCSLI Measure 2018; 12(3): 41-56. https://doi.org/10.1080/19315775.2019.1710003
  38. Gao Y, Hang Y, Yang M. A cooling load prediction method using improved ceemdan and markov chains correction. Journal of Building Engineering 2021; 42: 103041. https://doi.org/10.1016/j.jobe.2021.103041
  39. Tavakolan M, Mostafazadeh F, Eirdmousa SJ, Safari A, Mirzaei K. A parallel computing simulation-based multiobjective optimization framework for economic analysis of building energy retrofit: A case study in iran. Journal of Building Engineering 2022; 45: 103485. https://doi.org/10.1016/j.jobe.2021.103485
  40. Kuang Y, Sumathy K, Wang R. Study on a direct-expansion solar-assisted heat pump water heating system. International Journal of Energy Research 2003; 27(5): 531-48. https://doi.org/10.1002/er.893
  41. Chata FG, Chaturvedi S, Almogbel A. Analysis of a direct expansion solar assisted heat pump using different refrigerants. Energy Conversion and Management 2005; 46(15): 2614-24. https://doi.org/10.1016/j.enconman.2004.12.001
  42. Xu G, Deng S, Zhang X, Yang L, Zhang Y. Simulation of a photovoltaic/thermal heat pump system having a modified collector/evaporator. Solar Energy 2009; 83(11): 1967 -76. https://doi.org/10.1016/j.solener.2009.07.008
  43. Chow TT, Pei G, Fong K, Lin Z, Chan A, He M. Modeling and application of direct-expansion solar-assisted heat pump for water heating in subtropical hong kong. Applied Energy 2010; 87(2): 643-9. https://doi.org/10.1016/j.apenergy.2009.05.036
  44. Kong X, Zhang D, Li Y, Yang Q. Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater. Energy 2011; 36(12): 6830-8. https://doi.org/10.1016/j.energy.2011.10.013
  45. Moreno-Rodríguez A, González-Gil A, Izquierdo M, Garcia-Hernando N. Theoretical model and experimental validation of a direct-expansion solar assisted heat pump for domestic hot water applications. Energy 2012; 45(1): 704-15. https://doi.org/10.1016/j.energy.2012.07.021
  46. Chaturvedi S, Gagrani V, Abdel-Salam T. Solar-assisted heat pump - a sustainable system for low-temperature water heating applications. Energy Conversion and Management 2014; 77: 550-7. https://doi.org/10.1016/j.enconman.2013.09.050
  47. Sun X, Dai Y, Novakovic V, Wu J, Wang R. Performance comparison of direct expansion solar-assisted heat pump and conventional air source heat pump for domestic hot water. Energy Procedia 2015; 70: 394 - 401. https://doi.org/10.1016/j.egypro.2015.02.140
  48. Deng W, Yu J. Simulation analysis on dynamic performance of a combined solar/air dual source heat pump water heater. Energy Conversion and Management 2016; 120: 378 -87. https://doi.org/10.1016/j.enconman.2016.04.102
  49. Kong X, Li Y, Lin L, Yang Y. Modeling evaluation of a direct-expansion solar-assisted heat pump water heater using R410A. International Journal of Refrigeration 2017; 76: 136-46. https://doi.org/10.1016/j.ijrefrig.2017.01.020
  50. Mohamed E, Riffat S, Omer S. Low-temperature solar-plate-assisted heat pump: A developed design for domestic applications in cold climate. International Journal of Refrigeration 2017; 81: 134 -50. https://doi.org/10.1016/j.ijrefrig.2017.05.020
  51. Duarte WM. Numeric model of a direct expansion solar assisted heat pump water heater operating with low GWP refrigerants (R1234yf, R290, R600a and R744) for replacement of R134a. Ph.D. thesis; UFMG; 2018.
  52. Rabelo SN, Paulino TF, Machado L, Duarte WM. Economic analysis and design optimization of a direct expansion solar assisted heat pump. Solar Energy 2019; 188: 164 -74. https://doi.org/10.1016/j.solener.2019.05.072
  53. Kong X, Wang B, Shang Y, Li J, Li Y. Influence of different regulation modes of compressor speed on the performance of direct-expansion solar-assisted heat pump water heater. Applied Thermal Engineering 2020; 169: 115007. https://doi.org/10.1016/j.applthermaleng.2020.115007
  54. Diniz HAG, Paulino TF, Pabon JJG, Maia AAT, Oliveira RN. Dynamic model of a transcritical co2 heat pump for residential water heating. Sustainability 2021; 13(6). https://doi.org/10.3390/su13063464
  55. Wang B, Kong X, Yan X, Shang Y, Li Y. Influence of subcooling on performance of direct-expansion solar-assisted heat pump. International Journal of Refrigeration 2021; 122: 201-9. https://doi.org/10.1016/j.ijrefrig.2020.10.037
  56. Ma K, Wang Z, Li X, Wu P, Li S. Structural optimization of collector/evaporator of direct-expansion solar/airassisted heat pump. Alexandria Engineering Journal 2021; 60(1): 387-92. https://doi.org/10.1016/j.aej.2020.08.039
  57. Dai R, Tian R, Zheng S, Wei M, Shi G. Dynamic performance evaluation of lng vaporization system integrated with solar-assisted heat pump. Renewable Energy 2022; 188: 561-72. https://doi.org/10.1016/j.renene.2022.02.062
  58. Humia GM. Estudo experimental e modelo de simulação do inventário de refrigerante em uma bomba de calor a CO2 dotada de evaporador solar. Ph.D. thesis; UFMG; 2022.
  59. Kara O, Ulgen K, Hepbasli A. Exergetic assessment of direct-expansion solar-assisted heat pump systems: review and modeling. Renewable and Sustainable Energy Reviews 2008; 12(5): 1383-401. https://doi.org/10.1016/j.rser.2006.12.001
  60. Omojaro P, Breitkopf C. Direct expansion solar assisted heat pumps: A review of applications and recent research. Renewable and Sustainable Energy Reviews 2013; 22: 33 - 45. https://doi.org/10.1016/j.rser.2013.01.029
  61. Mohanraj M, Belyayev Y, Jayaraj S, Kaltayev A. Research and developments on solar assisted compression heat pump systems - A comprehensive review (Part A: Modeling and modifications). Renewable and Sustainable Energy Reviews 2018; 83: 90 - 123. https://doi.org/10.1016/j.rser.2017.08.022
  62. Mohanraj M, Belyayev Y, Jayaraj S, Kaltayev A. Research and developments on solar assisted compression heat pump systems - A comprehensive review (Part-B: Applications). Renewable and Sustainable Energy Reviews 2018; 83: 124 -55. https://doi.org/10.1016/j.rser.2017.08.086
  63. de Paula CH, Duarte WM, Rocha TTM, de Oliveira RN, Maia AAT. Energetic, exergetic, environmental, and economic assessment of a cascade refrigeration system operating with four different ecological refrigerant pairs. International Journal of Air-Conditioning and Refrigeration 2021; 29(03): 2150025. https://doi.org/10.1142/S2010132521500255
  64. Duprez ME, Dumont E, Frère M. Modelling of reciprocating and scroll compressors. International Journal of Refrigeration 2007; 30(5): 873-86. https://doi.org/10.1016/j.ijrefrig.2006.11.014
  65. Ndiaye D, Bernier M. Dynamic model of a hermetic reciprocating compressor in on-off cycling operation (abbreviation: Compressor dynamic model). Applied Thermal Engineering 2010; 30(8): 792-9. https://doi.org/10.1016/j.applthermaleng.2009.12.007
  66. Bell IH, Ziviani D, Lemort V, Bradshaw CR, Mathison M, Horton WT, et al. Pdsim: A general quasi-steady modeling approach for positive displacement compressors and expanders. International Journal of Refrigeration 2020; 110: 310-22. https://doi.org/10.1016/j.ijrefrig.2019.09.002
  67. de Paula CH, Duarte WM, Rocha TTM, de Oliveira RN, Maia AAT. Optimal design and environmental, energy and exergy analysis of a vapor compression refrigeration system using r290, r1234yf, and r744 as alternatives to replace r134a. International Journal of Refrigeration 2020; 113: 10-20. https://doi.org/10.1016/j.ijrefrig.2020.01.012
  68. Xu Y, Mao C, Zhang X, Shen X, Huang Y, Chen G. Optimization on integrated inverter-compressor co2 heat pump with new operating model. Applied Thermal Engineering 2022; 200: 117632. https://doi.org/10.1016/j.applthermaleng.2021.117632
  69. F-Chart Software. Equation engineering solver v10.643. 2019.
  70. Bell IH, Wronski J, Quoilin S, Lemort V. Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Industrial & Engineering Chemistry Research 2014; 53(6): 2498-508. https://doi.org/10.1021/ie4033999
  71. Minetto S. Theoretical and experimental analysis of a CO2 heat pump for domestic hot water. International journal of refrigeration 2011; 34(3): 742-51. https://doi.org/10.1016/j.ijrefrig.2010.12.018
  72. Duarte WM, Paulino TF, Tavares SG, Cançado KN, Machado L. Comparative study of geothermal and conventional air conditioner: A case of study for office applications. Journal of Building Engineering 2023; 105786. https://doi.org/10.1016/j.jobe.2022.105786
  73. Laughman CR, Qiao H, Aute V, Radermacher R. A comparison of transient heat pump cycle models using alternative flow descriptions. Science and Technology for the Built Environment 2015; 21(5): 666-80. https://doi.org/10.1080/23744731.2015.1040342
  74. Nunes R, Castro L, Machado L, Koury R. Distributed and nonsteady-state model of an air cooler working with R22 and R410A. International Journal of Air-Conditioning and Refrigeration 2016; 24(02): 1650008. https://doi.org/10.1142/S2010132516500085
  75. Garcia J, Ali T, Duarte WM, Khosravi A, Machado L. Comparison of transient response of an evaporator model for water refrigeration system working with r1234yf as a drop-in replacement for r134a. International Journal of Refrigeration 2018; 91: 211-22. https://doi.org/10.1016/j.ijrefrig.2018.04.026
  76. Li W, Chu Y, Xu P, Yang Z, Ji Y, Ni L, et al. A transient model for the thermal inertia of chilled-water systems during demand response. Energy and Buildings 2017; 150: 383-95. https://doi.org/10.1016/j.enbuild.2017.05.078
  77. de Paula CH, Duarte WM, Rocha TTM, de Oliveira RN, de Paoli Mendes R, Maia AAT. Thermo-economic and environmental analysis of a small capacity vapor compression refrigeration system using R290, R1234yf, and R600a. International Journal of Refrigeration 2020; 118: 250-60. https://doi.org/10.1016/j.ijrefrig.2020.07.003
  78. Duarte WM, Paulino TF, Tavares SG, Maia AA, Machado L. Feasibility of solar-geothermal hybrid source heat pump for producing domestic hot water in hot climates. International Journal of Refrigeration 2021; 124: 184-96. https://doi.org/10.1016/j.ijrefrig.2020.12.022
  79. Gliah O, Kruczek B, Etemad SG, Thibault J. The effective sky temperature: an enigmatic concept. Heat and mass transfer 2011; 47(9): 1171-80. https://doi.org/10.1007/s00231-011-0780-1
  80. Berdahl P, Fromberg R. The thermal radiance of clear skies. Solar Energy 1982; 29(4): 299-314. https://doi.org/10.1016/0038-092X(82)90245-6
  81. Bergman TL, Lavine AS, Incropera FP, DeWitt DP. Introduction to heat transfer. John Wiley & Sons; 2011.
  82. Neils G, Klein S. Heat Transfer. Cambridge university press; 2009.
  83. ASHRAE. ASHRAE Handbook - Fundamentals (SI Edition). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.; 2013. ISBN 978-1-936504-46-6.
  84. Lloyd J, Moran W. Natural convection adjacent to horizontal surface of various planforms. Journal of Heat Transfer 1974; 96(4): 443-7. https://doi.org/10.1115/1.3450224
  85. Churchill SW, Chu HHS. Correlating equations for laminar and turbulent free convection from a vertical plate. International Journal of Heat and Mass Transfer 1975; 18(11): 1323 -9. https://doi.org/10.1016/0017-9310(75)90243-4
  86. Churchill SW, Ozoe H. Correlations for laminar forced convection in flow over an isothermal flat plate and in developing and fully developed flow in an isothermal tube. Journal of Heat Transfer 1973. https://doi.org/10.1115/1.3450078
  87. Shah MM. Unified correlation for heat transfer during boiling in plain mini/micro and conventional channels. International Journal of Refrigeration 2017; 74: 604-24. https://doi.org/10.1016/j.ijrefrig.2016.11.023
  88. Dittus FW, Boelter M. Heat transfer in automobile radiators of the tubler type. Univ Calif Pubs Eng 1930; 2: 443.
  89. Liu Z, Winterton R. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. International journal of heat and mass transfer 1991; 34(11): 2759-66. https://doi.org/10.1016/0017-9310(91)90234-6
  90. Sun L, Mishima K. An evaluation of prediction methods for saturated flow boiling heat transfer in mini-channels. International Journal of Heat and Mass Transfer 2009; 52(23-24): 5323-9. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.041
  91. Cooper M. Saturated nucleate pool boiling-a simple correlation. In: 1st UK National Heat Transfer Conference, 1984. 1984, p. 785-93. https://doi.org/10.1016/B978-0-85295-175-0.50013-8
  92. Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng 1976; 16(2): 359-68.
  93. Rohsenow WM, Hartnett JP, Cho YI, et al. Handbook of heat transfer; vol. 3. McGraw-Hill, New York; 1998.
  94. Zigrang D, Sylvester N. Explicit approximations to the solution of colebrook’s friction factor equation. AIChE Journal 1982; 28(3): 514-5. https://doi.org/10.1002/aic.690280323
  95. Shah MM. Comprehensive correlations for heat transfer during condensation in conventional and mini/micro channels in all orientations. International journal of refrigeration 2016; 67: 22-41. https://doi.org/10.1016/j.ijrefrig.2016.03.014
  96. Chapra SC, Canale RP, et al. Numerical methods for engineers. Boston: McGraw-Hill Higher Education,; 2010.
  97. Bell C, Rutman J. Calebbell/ht: Heat transfer component of chemical engineering design library (ChEDL). 2021
  98. Bell C, Volpatto D, Killam R, Kremitzki K, B A, KEVIN G, et al. Calebbell/fluids: 1.0.0 release. 2021.
  99. BIPM, IEC, IFCC, ILAC, IUPAC, IUPAP, et al. Evaluation of measurement data-supplement 1 to the’guide to the expression of uncertainty in measurement: Propagation of distributions using a monte carlo method. Bureau international des poids et mesures - BIPM 2008.
  100. Jalid A, Hariri S, El Gharad A, Senelaer JP. Comparison of the gum and monte carlo methods on the flatness uncertainty estimation in coordinate measuring machine. International Journal of Metrology and Quality Engineering 2016; 7(3): 302. https://doi.org/10.1051/ijmqe/2016013
  101. Mahmoud GM, Hegazy RS. Comparison of gum and monte carlo methods for the uncertainty estimation in hardness measurements. International Journal of Metrology and Quality Engineering 2017; 8: 14. https://doi.org/10.1051/ijmqe/2017014
  102. Soares DSL. Sobre o valor da aceleração da gravidade medido no departamento de física. 2011. URL: http: //goo.gl/iIqYmq.
  103. Diniz HAG. Estudo comparativo da eficiência energética de uma bomba de calor assistida por energia solar operando com condensadores por imersão e coaxial. Master’s thesis; UFMG; Belo Horizonte, MG, Brazil; 2017.
  104. Duarte WM, Pabon JJG, Maia AAT, Machado L. Nonisentropic phenomenological model of a reciprocating compressor. International Journal of Air-Conditioning and Refrigeration 2019: 1950039. https://doi.org/10.1142/S2010132519500391
  105. Kumar S, Mullick S. Wind heat transfer coefficient in solar collectors in outdoor conditions. Solar Energy 2010; 84(6): 956-63. https://doi.org/10.1016/j.solener.2010.03.003
  106. Sharples S, Charlesworth P. Full-scale measurements of wind-induced convective heat transfer from a roof-mounted flat plate solar collector. Solar Energy 1998; 62(2): 69-77. https://doi.org/10.1016/S0038-092X(97)00119-9
  107. Watmuff J, Charters W, Proctor D. Solar and wind induced external coefficients for solar collectors. comples, 2. Rev Inter Heliotech, Marseille 1977.
  108. McAdams WH. Heat transmission. Tech. Rep.; 1954.