In this work the evaporation of the emulsified glycerol- heavy fuel oil (CG-HFO) droplets with different activator is modeled. The influence of activator gas bubbles volume developments on the evaporation of fuel droplets in the high temperature combustion chamber is studied. The crude glycerol as the secondary product of biodiesel production is used as the first component of the emulsion while the second component is heavy fuel oil. The crude glycerol contains methanol, aromatics, minerals, a little bit biodiesel and water. These materials were pressurized and injected in the chamber with three inputs: the first one is for the CG-HFO, the second one is for activator while the third one is for air for forming the emulsion and then passing to the combustion chamber. The applied pressure is determined according to contents which lead to flame stability of the primary formed emulation. A comparison of calculated results, basing on semi-empirical method, with experimental ones demonstrates the modeling acceptable accuracy.
References
Kovacs A. Aspects of refining biodiesel byproduct glycerin. Petroleum & Coal 2011; 53 (1): 91-97.
Kocsisova T, Cvengros J. G-phase from methyl ester production - splitting and refining. Petroleum and Coal, 2006; 48(2): 1-5.
Kolesárová N, Hutňan M, Bodík I, & Špalková V. Utilization of biodiesel by-Products for biogas production. Journal of Biomedicine and Biotechnology 2011; 1-15. https://doi.org/10.1155/2011/126798
Xiao Y, Xiao G, Varma, A. A Universal Procedure for Crude Glycerol Purification from Different Feedstocks in Biodiesel Production: Experimental and Simulation Study. Industrial & Engineering Chemistry Research 2013; 52(39): 14291- 14296. https://doi.org/10.1021/ie402003u
Singhabhandhu A, Tezuka T. A perspective on incorporation of glycerin purification process in biodiesel plants using waste cooking oil as feedstock. Energy 2010; 35(6): 2493- 2504. https://doi.org/10.1016/j.energy.2010.02.047
Mize HE, Lucio AJ, Fhaner CJ, Pratama FS, Robbins LA, Karpovich DS. Emulsions of Crude Glycerin from Biodiesel Processing with Fuel Oil for Industrial Heating. Journal of Agricultural and Food Chemistry, 2013; 61(6); 1319-1327. https://doi.org/10.1021/jf304883t
Eaton SJ, Harakas GN, Kimball RW, Smith JA, Pilot KA, Kuflik MT, Bullard JM. Formulation and Combustion of Glycerol-Diesel Fuel Emulsions. Energy & Fuels 2014; 28(6): 3940-3947. https://doi.org/10.1021/ef500670d
Leng L, Yuan X, Zeng G, Chen X, Wang H, Li H, Fu L, Xiao Zh, Jiang L, Lai C. Rhamnolipid based glycerol-in-diesel microemulsion fuel: Formation and characterization. Fuel 2015; 147: 76-81. https://doi.org/10.1016/j.fuel.2015.01.052
Asdrubali F, Cotana F, Rossi F, Presciutti A, Rotili A, Guattari C. Life Cycle Assessment of New Oxy-Fuels from BiodieselDerived Glycerol. Energies, 2015; 8(3): 1628-1643. https://doi.org/10.3390/en8031628
Junior FSC, Alves JCS, Cavalcante FSA, de Lima LC. Parameters Analysis of the Assisted Combustion of Residual Biodiesel Glycerol. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies 2012; 3(4): 455-465. http://TuEngr.com/V03/455-465.pdf
Chertkov Ya. В, Spirkin V. (1974). The use of jet fuels in aviation, Transport, Moscow.
Spalding DB. Convective mass transfer an introduction, Edward Arnold Ltd., London 1963.
Spalding DB. Combustion and mass transfer, Imperial College of Science & Technology, London, England & Purdue University, Indiana, USA, Pergamon Press Ltd 1979.
Shuleikin VV. The kinetic theory of evaporation. Russian Journal of Physical Chemistry of Gases (Leningrad University) 1926; 58: 527-540. (in Russian)
Shuleikin VV. Sea Physics. Moscow, Nauka 1968.
Lewis B, Pease RN, Taylor HS. (eds). Combustion Processes. Oxford University Press, London; York, Pa. printed 1956. https://doi.org/10.1515/9781400877027
Ol'shanskii SV. The Calculation of Droplet's Vertical Motion that Evaporates under the Sreznevsky Law. Naukovi visti NTUU - KPI, 2011; (4): 149-163.
Dwyer ОE. Boiling Liquid-Metal Heat Transfer, American Nuclear Society, La Grange Park, Illinois 1976.
Boyadjiev C, Boyadjiev B. On the non-stationary evaporation kinetics. International Journal of Heat and Mass Transfer 2003; 46(9): 1679-1685. https://doi.org/10.1016/S0017-9310(02)00467-2
Kuznetsov D, Moiseev M, Zhukov V. Studying the development of evaporation front interface in Freon R21 at non-stationary heat release. MATEC Web of Conferences 2015; 23: 01022. https://doi.org/10.1051/matecconf/20152301022
Volmer R, Eckert J, Füldner G, Schnabel L. Evaporator development for adsorption heat transformation devices - Influencing factors on non-stationary evaporation with tubefin heat exchangers at sub-atmospheric pressure. Renewable Energy 2017; 110: 141-153. https://doi.org/10.1016/j.renene.2016.08.030
Wang F, Yao J, Yang S, Liu R, Jin J. A new stationary droplet evaporation model and its validation. Chinese Journal of Aeronautics, 2017; 30(4): 1407-1416. https://doi.org/10.1016/j.cja.2017.06.012
Colburn AP, Drew ТВ. The Condensation of Mixed Vapours. Trans. Am. Inst. Chem. Engnrs 1937; 33: 197-215
Luchak G, Langstroth GG. Applications of diffusion theory to evaporation from droplets and flat surfaces, Canadian Journal of Research, 1950; 28a(6): 574-579. https://doi.org/10.1139/cjr50a-048
Dickman R, Vidigal R. Quasi-stationary distributions for stochastic processes with an absorbing state. Journal of Physics A: Mathematical and General 2002; 35(5): 1147- 1166. https://doi.org/10.1088/0305-4470/35/5/303
Burger M, Schmehl R, Prommersberger K, Schäfer O, Koch R, Wittig S. Droplet evaporation modeling by the distillation curve model: accounting for kerosene fuel and elevated pressures. International Journal of Heat and Mass Transfer 2003 46(23): 4403-4412. https://doi.org/10.1016/S0017-9310(03)00286-2
Popov S, Melling A, Durst F, Ward CA. Apparatus for investigation of evaporation at free liquid-vapour interfaces. International Journal of Heat and Mass Transfer 2005; 48(11): 2299-2309. https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.038
Hołyst R, Litniewski M, Jakubczyk D, Kolwas K, Kolwas M, Kowalski K, Zientara M. Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations. Reports on Progress in Physics 2013; 76(3): 034601. https://doi.org/10.1088/0034-4885/76/3/034601
Kotake S, Okazaki T. Evaporation and combustion of a fuel droplet. International Journal of Heat and Mass Transfer 1969; 12(5): 595-609. https://doi.org/10.1016/0017-9310(69)90041-6
Abramzon B, Sirignano WA. Droplet vaporization model for spray combustion calculations. International Journal of Heat and Mass Transfer 1989; 32(9): 1605-1618. https://doi.org/10.1016/0017-9310(89)90043-4
Sazhin S, Kristyadi T, Abdelghaffar W, Heikal M. Models for fuel droplet heating and evaporation: Comparative analysis. Fuel 2006; 85(12-13): 1613-1630. https://doi.org/10.1016/j.fuel.2006.02.012
Sazhin SS. Advanced models of fuel droplet heating and evaporation. Progress in Energy and Combustion Science 2006; 32(2): 162-214. https://doi.org/10.1016/j.pecs.2005.11.001
Sazhin SS, Al Qubeissi MA. Modelling of automotive fuel droplet heating and evaporation: mathematical tools and approximations. Journal of Physics: Conference Series 2016; 727: 012015. https://doi.org/10.1088/1742-6596/727/1/012015
Villasenor R, Garcia F. An experimental study of the effects of asphaltenes on heavy fuel oil droplet combustion. Fuel 1999; 78(8): 933-944. https://doi.org/10.1016/S0016-2361(99)00010-1
Ocampo-Barrera R, Villasenor R, Diego-Marin A. An experimental study of the effect of water content on combustion of heavy fuel oil/water emulsion droplets. Combustion and Flame 2001; 126(4): 1845-1855. https://doi.org/10.1016/S0010-2180(01)00295-4