Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 10 (2023)

Diameter-Dependent Shape Memory Effect and Superelasticity in Ni-Mn-Ga Alloy Micro-fibers

DOI
https://doi.org/10.31875/2410-2199.2023.10.05
Published
2023-08-24

Abstract

Abstract: The functional properties of shape memory alloys (SMAs) may be affected by the material size and thus is important for designing micron-sized devices. Here the diameter-dependent size effect was demonstrated in Ni-Mn-Ga fibers with diameters of 15, 41, 53 and 70μm. The effect of fiber diameter on the shape memory effect (SME) and superelasticity (SE) was systematically studied. The results showed that all Ni-Mn-Ga fibers exhibited good stress assisted thermal cycles and SE, both diameter-dependent. For stress assisted thermal cycles, the temperature hysteresis of martensite transformation (MT) and sensitivity of MT temperature vs stress increased with increasing fiber diameter. While for SE, the stress hysteresis, temperature dependence of critical stress and energy dissipation capacity decreased with increasing fiber diameter. Thermodynamic analysis revealed that the diameter-dependent effect may be attributed to the different heat exchange and frictional work dissipation capacities related to the specific surface areas that affected the thermal- or stress-induced MT processes. Such diameter dependence in Ni-Mn-Ga micro-fibers needs to be considered for the design and application in micro-sized devices.

References

  1. Wang J.Y.; Zhang M.L.; Wang Z.X.; Sun S.; Ning Y.; Yang X.P.; et al. An ultra-low power, small size and high precision indoor localization system based on mems ultrasonic transducer chips. IEEE T Ultrason Ferr. 2022, 69, 1469-77. https://doi.org/10.1109/TUFFC.2022.3148314
  2. Ganji BA.; Kheiry S.; Soleimani S. Design of small size and high sensitive less-invasive wireless blood pressure sensor using MEMS technology. Iet Circ Device Syst. 2019, 13, 39-44. https://doi.org/10.1049/iet-cds.2018.0013
  3. Biyikli N.; Damgaci Y.; Cetiner B.A. Low-voltage small-size double-arm MEMS actuator. Electron Lett. 2009, 45, 354-5. https://doi.org/10.1049/el.2009.0207
  4. Cui Y.T. Thermodynamic effects and applied functions of Ni-Mn-Ga alloys. Ph.D Thesis, Chongqing University, Chongqing China, 2004.
  5. D'Silva G.J.; Feigenbaum H.P.; Ciocanel C. On the power and efficiency of Ni2MnGa magnetic shape memory alloy power harvesters, Smart Materials and Structures, 2022, 31(7), 75013. https://doi.org/10.1088/1361-665X/ac72da
  6. Feng C.; Hu D.; Gong K.; Jiang X.; Yin J.; Cao Y.; Tang X.; Yang F.; Zhou Z.; Yu G.; Evans D.A. Thickness-dependent electronic structure modulation of ferromagnetic films on shape memory alloy substrates based on a pure strain effect. Applied Physics Letters, 2016, 109(21), 212401. https://doi.org/10.1063/1.4967996
  7. Barth J.; Krevet B.; Kohl M. A bistable shape memory microswitch with high energy density. Smart Materials and Structures, 2010, 19(SI9), 94004. https://doi.org/10.1088/0964-1726/19/9/094004
  8. Reynaerts D.; Van Brussel H. Design aspects of shape memory actuators. Mechatronics, 1998, 8(6), 635-656. https://doi.org/10.1016/S0957-4158(98)00023-3
  9. Chen Y.; Schuh C.A. Size effects in shape memory alloy microwires. Acta Materialia, 2011, (59), 537-553. https://doi.org/10.1016/j.actamat.2010.09.057
  10. Castan F.J.; Nelson-Cheeseman B.; O'Handley R.C.; Ross C.A. Structure and thermomagnetic properties of polycrystalline Ni-Mn-Ga thin films. Appl Physics, 2003, 10(93), 8492-8494. https://doi.org/10.1063/1.1555976
  11. Sozinov A.; Lilthachev A.A.; lanska N.; Ullakko K. Giant magnetic-field-indued strain in Ni-Mn-Ga seven-layered martensitic phase. Appl Physics, 2002, 80, 1746-1748. https://doi.org/10.1063/1.1458075
  12. Wu G.H.; Yu C.H.; Meng L.Q.; Chen J.L.; Yang F.M.; Qi S.R.; Zhan W.S.; Wang. Z.; Zheng Y.F.; Zhao L.C. Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition. Applied Physics Letters, 1999, 75(19), 2990-2992. https://doi.org/10.1063/1.125211
  13. Pagounis E.; Chulist R.; Szczerba M.J.; Laufenberg M. Over 7% magnetic field-induced strain in a Ni-Mn-Ga five-layered martensite. Applied Physics Letters, 2014, 105(5), 52405. https://doi.org/10.1063/1.4892633
  14. Karaca H.E.; Karaman I.; Basaran B.; Ren Y.; Chumlyakov. Y.I.; Maier H.J. Magnetic field-induced phase transformation in NiMnColn magnetic shape-memory alloys - A new actuation mechanism with large work output. Advanced Functional Materials, 2009, 19(7), 983-998. https://doi.org/10.1002/adfm.200801322
  15. Soderberg O, Ge Y, Sozinov A, Hannula S.P, Lindroos V.K. Recent breakthrough development of the magnetic shape memory effect in Ni-Mn-Ga alloys. Smart Materials and Structures, 2005, 14(5), s223-235. https://doi.org/10.1088/0964-1726/14/5/009
  16. Sun G.F.; Qiang W.J. Magnetic functional materials. Beijing: Chemical Industry Press, 2003, 197.
  17. Gonzalez J.; Ardanuy M.; Gonzalez M.; Rodriguez R.; Jovancic P. Polyurethane shape memory filament yarns: Melt spinning, carbon-based reinforcement, and characterization. Text Res J. 2023, 93, 957-70. https://doi.org/10.1177/00405175221114165
  18. Ueland S.M.; Schuh C.A. Superelasticity and fatigue in oligocrystalline shape memory alloy microwires. Acta Mater. 2012, 60, 282-292. https://doi.org/10.1016/j.actamat.2011.09.054
  19. Bechtold C.; Gerber A.; Wuttig M.; Quandt E. Magnetoelastic hysteresis in 5M NiMnGa single crystals. Scripta Materialia, 2008, 58(11), 1022-1024. https://doi.org/10.1016/j.scriptamat.2008.01.035
  20. Hamilton R.F.; Dilibal S.; Sehitoglu H.; Maier H.J. Underlying mechanism of dual hysteresis in NiMnGa single crystals. Materials Science and Engineering A, 2011, 528(3), 1877-1881. https://doi.org/10.1016/j.msea.2010.10.042
  21. He Y. Interface propagation and energy dissipation in Shape Memory Alloys. Scripta Mater. 2023, 230, 115420. https://doi.org/10.1016/j.scriptamat.2023.115420
  22. Zhao L.C.; Cai W.; Zheng Y.F. In Shape memory effect and superelasticity of alloys; National Defense Industry Press: Beijing, China, 2002, pp. 2-12.