Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 10 (2023)

Fabrication of PVDF/PMMA Polymer for Sustainable Energy Harvesting

DOI
https://doi.org/10.31875/2410-2199.2023.10.07
Submitted
November 28, 2023
Published
2023-11-28

Abstract

Abstract: The synthesis of blends that combine properties of two or more polymeric materials is increasingly investigated due to the versatility of the synthesis and its growing potential for many applications, including sustainability. Their characteristics are defined mainly by the synthesis conditions. Therefore, this paper details the synthesis process of easy-to-handle films using mixing method. The procedures and drawbacks found during the preparation of composite films are described. Polymeric compounds formed by the mixture of polyvinylidene fluoride (PVDF) and polymethyl methacrylate (PMMA) are addressed, varying the concentration, and evaluating their impact on the piezoelectric capacity. Films were formed through the spin-coating technique and characterized by optical and holographic microscopes. The results showed that composites with a concentration of 50 wt.% or larger of PVDF in the blend acquire a morphology with a granular appearance, however at lower concentrations they present a homogeneous morphology similar to that of PMMA. A homogeneous distribution of PVDF in the PMMA stands out. However, excessive contents of PMMA are associated to peaks and non-uniformities detected like multicolored regions by digital holography. Controlled strength-strain laboratory tests allowed to evaluate the film blends performance. The results indicate noticeable improvements in voltage output for a composition 70wt% PVDF and 30 wt% PMMA.

References

  1. Leppe-Nerey JR, Nicho ME, Sierra-Espinosa FZ, Hernández-Guzmán F, Fuentes-Pérez M (2021) Experimental study of piezoelectric polymeric film as energy harvester. Materials Science and Engineering: B 272: 115366. https://doi.org/10.1016/j.mseb.2021.115366
  2. Leppe-Nerey JR, Sierra-Espinosa FZ, Nicho ME, Basurto-Pensado MA (2021) Power characteristics of a 70/30 wt.% PVDF/PMMA film in roadway electricity generation. Sens Actuators A Phys 317: 112461. https://doi.org/10.1016/j.sna.2020.112461
  3. Pike E (2011) Oportunidades de uso eficiente de los neumáticos
  4. Kang G Dong, Cao Y ming (2014) Application and modification of poly(vinylidene fluoride) (PVDF) membranes - A review. J Memb Sci 463: 145-165. https://doi.org/10.1016/j.memsci.2014.03.055
  5. Jeedi VR, Narsaiah EL, Yalla M, Swarnalatha R, Reddy SN, Sadananda Chary A (2020) Structural and electrical studies of PMMA and PVdF based blend polymer electrolyte. SN Appl Sci 2: 2093. https://doi.org/10.1007/s42452-020-03868-8
  6. Kawai H (1969) The Piezoelectricity of Poly (vinylidene Fluoride). Jpn J Appl Phys 8: 975-976. https://doi.org/10.1143/JJAP.8.975
  7. Choi S, Jiang Z (2006) A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals. Sens Actuators A Phys 128: 317-326. https://doi.org/10.1016/j.sna.2006.02.012
  8. Saunier J, Alloin F, Sanchez JY, Barrière B (2004) Plasticized Microporous Poly(vinylidene fluoride) Separators for Lithium-Ion Batteries. I. Swelling Behavior of Dense Membranes with Respect to a Liquid Electrolyte - Characterization of the Swelling Equilibrium. J Polym Sci B Polym Phys 42: 532-543.https://doi.org/10.1002/polb.10730
  9. Kang SJ, Park YJ, Bae I, Kim KJ, Kim HC, Bauer S, Thomas EL, Park C (2009) Printable ferroelectric PVDF/PMMA blend films with ultralow roughness for low voltage non-volatile polymer memory. Adv Funct Mater 19: 2812-2818. https://doi.org/10.1002/adfm.200900589
  10. Deeba F, Gupta AK, Kulshrestha V, Bafna M, Jain A (2022) Investigations on dielectric properties of PVDF/PMMA blends. Mater Today Proc 66: 3547-3552. https://doi.org/10.1016/j.matpr.2022.06.417
  11. Laroche G, Lafrance CP, Prud'homme RE, Guidoin R (1998) Identification and quantification of the crystalline structures of poly(vinylidene fluoride) sutures by wide-angle X-ray scattering and differential scanning calorimetry. J Biomed Mater Res 39: 184-189. https://doi.org/10.1002/(SICI)1097-4636(199802)39:2<184::AID-JBM3>3.0.CO;2-L
  12. Charlot B, Gauthier S, Garraud A, Combette P, Giani A (2011) PVDF/PMMA blend pyroelectric thin films. Journal of Materials Science: Materials in Electronics 22: 1766-1771. https://doi.org/10.1007/s10854-011-0360-7
  13. Shah D, Maiti P, Gunn E, Schmidt DF, Jiang DD, Batt CA, Giannelis EP (2004) Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology. Advanced Materials 16: 1173-1177. https://doi.org/10.1002/adma.200306355
  14. Park YJ, Kang YS, Park C (2005) Micropatterning of semicrystalline poly(vinylidene fluoride) (PVDF) solutions. Eur Polym J 41: 1002-1012. https://doi.org/10.1016/j.eurpolymj.2004.11.022
  15. Sun J, Yao L, Zhao Q-L, Huang J, Song R, Ma Z, He L-H, Huang W, Hao Y-M (2011) Modification on crystallization of poly(vinylidene fluoride) (PVDF) by solvent extraction of poly(methyl methacrylate) (PMMA) in PVDF/PMMA blends. Front Mater Sci 5: 388-400. https://doi.org/10.1007/s11706-011-0152-2
  16. Hirata Y, Kotaka T (1981) Phase separation and viscoelastic behavior of semicompatible polymer blends: Poly(vinylidene fluoride)/poly(methyl methacrylate) system. Polym J 13: 273-281. https://doi.org/10.1295/polymj.13.273
  17. Elashmawi IS, Hakeem NA (2008) Effect of PMMA addition on characterization and morphology of PVDF. Polym Eng Sci 48: 895-901. https://doi.org/10.1002/pen.21032
  18. Gregorio RJr, NCP de Souza N (1995) Effect of PMMA addition on the solution crystallization of the α and β phases of poly(vinylidene fluoride) (PVDF). J Phys D Appl Phys 28: 432-436. https://doi.org/10.1088/0022-3727/28/2/028
  19. Wankhade SH, Tiwari S, Gaur A, Maiti P (2020) PVDF-PZT nanohybrid based nanogenerator for energy harvesting applications. Energy Reports 6: 358-364. https://doi.org/10.1016/j.egyr.2020.02.003
  20. Uddin ASMI, Lee D, Cho C, Kim B (2022) Impact of Multi-Walled CNT Incorporation on Dielectric Properties of PVDF-BaTiO3 Nanocomposites and Their Energy Harvesting Possibilities. Coatings 12: 77. https://doi.org/10.3390/coatings12010077
  21. Bodkhe S, Rajesh PSM, Kamle S, Verma V (2014) Beta-phase enhancement in polyvinylidene fluoride through filler addition: Comparing cellulose with carbon nanotubes and clay. Journal of Polymer Research 21: 434. https://doi.org/10.1007/s10965-014-0434-3
  22. Wang SH, Wan Y, Sun B, Liu LZ, Xu W (2014) Mechanical and electrical properties of electrospun PVDF/MWCNT ultrafine fibers using rotating collector. Nanoscale Res Lett 9: 1-7. https://doi.org/10.1186/1556-276X-9-522
  23. Gupta P, Rajput M, Singla N, Kumar V, Lahiri D (2016) Electric field and current assisted alignment of CNT inside polymer matrix and its effects on electrical and mechanical properties. Polymer (Guildf) 89: 119-127. https://doi.org/10.1016/j.polymer.2016.02.025
  24. Wattanasarn H (2020) Step Synthesis, Electrical Generator of PVDF / CNTsPiezoelectric. 12: 35-41.
  25. Misiurev D, Ţǎlu Ş, Dallaev R, Sobola D, Goncharova M (2021) Preparation of PVDF-CNT composite. E3S Web of Conferences 270: 1-8. https://doi.org/10.1051/e3sconf/202127001012
  26. Yu S, Zheng W, Yu W, Zhang Y, Jiang Q, Zhao Z (2009) Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42: 8870-8874. https://doi.org/10.1021/ma901765j
  27. Wang Y, Lei D, Wu L, Ma R, Ning H, Hu N, Lee A (2023) Effects of stretching on phase transformation of PVDF and its copolymers: A review, Open Physics 21: 20220255. https://doi.org/10.1515/phys-2022-0255
  28. Cui Y, Sui Y, Wei P, Lv Y, Cong Ch, Meng X, Ye H-M, Zhou Q (2023) Rationalizing the Dependence of Poly (Vinylidene Difluoride) (PVDF) Rheological Performance on the Nano-Silica. Nanomaterials 13: 1096. https://doi.org/10.3390/nano13061096
  29. Pawde SM, Deshmukh K (2009) Investigation of the structural, thermal, mechanical, and optical properties of poly(methyl methacrylate) and poly(vinylidene fluoride) blends. J Appl Polym Sci 114: 2169-2179. https://doi.org/10.1002/app.30641
  30. Vázquez Rodríguez M, Jiménez Martínez FJ, De Frutos J (2011) Banco de ensayos para materiales piezoeléctricos en aplicaciones viales. Boletín de la Sociedad Española de Cerámica y Vidrio 50: 65-72. https://doi.org/10.3989/cyv.092011
  31. Varela CA, Sierra FZ (2014) Cyclic strain rate in tyres as power source to augment automobile autonomy. International Journal of Vehicle Design 65: 270-285. https://doi.org/10.1504/IJVD.2014.060806