Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 10 (2023)

Case Study of Optimized Cascaded Phase Change Thermal Energy Storage Unit

DOI
https://doi.org/10.31875/2410-2199.2023.10.08
Submitted
January 31, 2024
Published
2023-12-30

Abstract

Phase change materials are paid increasing attention by the scholars in the past decades. For maintaining a relatively constant renewable energy output as a competent alternative for fossil fuel replacement, phase change storage unit are widely studied. However, for better pursuit of thermal energy performance and energy efficiency, only single staged phase change storage unit is not enough for increasing thermal requirements. Therefore, a triple staged phase change thermal energy storage unit have been proposed in this study. Meanwhile, correspondent comparison with single staged counterpart have been conducted along with related optimization. It has been concluded that the proposed thermal storage unit achieved 334.95 J/s & 41.54% / 186.37 J/s & 53.22 % in thermal energy exchange rate & exergy efficiency during endothermic/exothermic respectively. 3/21.4 L/min are the optimal circulating heat transfer fluid flowrates for endothermic/exothermic (better discharging rate)/ exothermic (better energy efficiency). Moreover, 100/9/15 are the best temperatures of circulating water for endothermic/ exothermic (better discharging rate)/ exothermic (better energy efficiency).

References

  1. Ahmed, S. D., Al-Ismail, F. S. M., Shafiullah, M., Al-Sulaiman, F. A., & El-Amin, I. M. (2020). Grid Integration Challenges of Wind Energy: A Review. IEEE Access, 8, 10857-10878. doi:https://doi.org/10.1109/ACCESS.2020.2964896
  2. Algarni, S., Mellouli, S., Alqahtani, T., Almutairi, K., khan, A., & Anqi, A. (2020). Experimental investigation of an evacuated tube solar collector incorporating nano-enhanced PCM as a thermal booster. Applied Thermal Engineering, 180, 115831. doi:https://doi.org/10.1016/j.applthermaleng.2020.115831
  3. Bao, X., Yang, H., Xu, X., Xu, T., Cui, H., Tang, W., Fung, W. H. (2020). Development of a stable inorganic phase change material for thermal energy storage in buildings. Solar Energy Materials and Solar Cells, 208, 110420. doi:https://doi.org/10.1016/j.solmat.2020.110420
  4. Cao, S., Luo, X., Han, X., Lu, X., & Zou, C. (2022). Development of a New Modified CaCl2·6H2O Composite Phase Change Material. Energies, 15(3). doi:https://doi.org/10.3390/en15030824
  5. Cheng, X., & Zhai, X. (2018). Thermal performance analysis of a cascaded cold storage unit using multiple PCMs. Energy, 143, 448-457. doi:https://doi.org/10.1016/j.energy.2017.11.009
  6. Dheep, G. R., & Sreekumar, A. (2018). Investigation on thermal reliability and corrosion characteristics of glutaric acid as an organic phase change material for solar thermal energy storage applications. Applied Thermal Engineering, 129, 1189-1196. doi:https://doi.org/10.1016/j.applthermaleng.2017.10.133
  7. Hassanpour, A., Borji, M., Ziapour, B. M., & Kazemi, A. (2020). Performance analysis of a cascade PCM heat exchanger and two-phase closed thermosiphon: A case study of geothermal district heating system. Sustainable Energy Technologies and Assessments, 40, 100755. doi:https://doi.org/10.1016/j.seta.2020.100755
  8. Huang, M., He, W., Incecik, A., Gupta, M. K., Królczyk, G., & Li, Z. (2022). Phase change material heat storage performance in the solar thermal storage structure employing experimental evaluation. Journal of Energy Storage, 46, 103638. doi:https://doi.org/10.1016/j.est.2021.103638
  9. Jouhara, H., Żabnieńska-Góra, A., Khordehgah, N., Ahmad, D., & Lipinski, T. (2020). Latent thermal energy storage technologies and applications: A review. International Journal of Thermofluids, 5-6, 100039. doi:https://doi.org/10.1016/j.ijft.2020.100039
  10. Kumar, K., & Saini, R. P. (2022). A review on operation and maintenance of hydropower plants. Sustainable Energy Technologies and Assessments, 49, 101704. doi:https://doi.org/10.1016/j.seta.2021.101704
  11. Kumar, R. R., Samykano, M., Pandey, A. K., Said, Z., Kadirgama, K., & Tyagi, V. V. (2022, 21-24 Feb. 2022). Experimental Investigations on Thermal Properties of Copper (II) Oxide Nanoparticles Enhanced Inorganic Phase Change Materials for Solar Thermal Energy Storage Applications. Paper presented at the 2022 Advances in Science and Engineering Technology International Conferences (ASET).
  12. Lamrani, B., Kuznik, F., & Draoui, A. (2020). Thermal performance of a coupled solar parabolic trough collector latent heat storage unit for solar water heating in large buildings. Renewable Energy, 162, 411-426. doi:https://doi.org/10.1016/j.renene.2020.08.038
  13. Lancet, D., & Pecht, I. (1977). Spectroscopic and immunochemical studies with nitrobenzoxadiazolealanine, a fluorescent dinitrophenyl analog. Biochemistry, 16(23), 5150-5157. doi:https://doi.org/10.1021/bi00642a031
  14. Levenda, A. M., Behrsin, I., & Disano, F. (2021). Renewable energy for whom? A global systematic review of the environmental justice implications of renewable energy technologies. Energy Research & Social Science, 71, 101837. doi:https://doi.org/10.1016/j.erss.2020.101837
  15. Li, X., He, Y., Yin, B., Miao, Z., & Li, X. (2008). Exergy flow and energy utilization of direct methanol fuel cells based on a mathematic model. Journal of Power Sources, 178(1), 344-352. doi:https://doi.org/10.1016/j.jpowsour.2007.08.019
  16. Ma, Z., Bao, H., & Roskilly, A. P. (2020). Electricity-assisted thermochemical sorption system for seasonal solar energy storage. Energy Conversion and Management, 209, 112659. doi:https://doi.org/10.1016/j.enconman.2020.112659
  17. Manohar, M., Koley, E., Ghosh, S., Mohanta, D. K., & Bansal, R. C. (2020). Spatio-temporal information based protection scheme for PV integrated microgrid under solar irradiance intermittency using deep convolutional neural network. International Journal of Electrical Power & Energy Systems, 116, 105576. doi:https://doi.org/10.1016/j.ijepes.2019.105576
  18. Manoj Kumar, P., Karuna, M. S., Sureshkumar, M. S., Lal Rinawa, M., Sakthivel, R., Muthukumar, K., & Kathir Malavan, E. (2023). Evaluating the effect of magnesium oxide nanoparticles on the thermal energy storage characteristics of the inorganic PCM. Materials Today: Proceedings. doi:https://doi.org/10.1016/j.matpr.2023.02.297
  19. Nekoonam, S., & Ghasempour, R. (2021). Optimization of a solar cascaded phase change slab-plate heat exchanger thermal storage system. Journal of Energy Storage, 34, 102005. doi:https://doi.org/10.1016/j.est.2020.102005
  20. Neto, P. B. L., Saavedra, O. R., & Oliveira, D. Q. (2020). The effect of complementarity between solar, wind and tidal energy in isolated hybrid microgrids. Renewable Energy, 147, 339-355. doi:https://doi.org/10.1016/j.renene.2019.08.134
  21. Nukulwar, M. R., & Tungikar, V. B. (2021). A review on performance evaluation of solar dryer and its material for drying agricultural products. Materials Today: Proceedings, 46, 345-349. doi:https://doi.org/10.1016/j.matpr.2020.08.354
  22. Pasupathi, M. K., Alagar, K., P, M. J., M.M, M., & Aritra, G. (2020). Characterization of Hybrid-nano/Paraffin Organic Phase Change Material for Thermal Energy Storage Applications in Solar Thermal Systems. Energies, 13(19). doi:https://doi.org/10.3390/en13195079
  23. Qiao, X., Kong, X., & Fan, M. (2022). Phase change material applied in solar heating for buildings: A review. Journal of Energy Storage, 55, 105826. doi:https://doi.org/10.1016/j.est.2022.105826
  24. Qiao, X., Kong, X., Li, H., Wang, L., & Long, H. (2020). Performance and optimization of a novel active solar heating wall coupled with phase change material. Journal of Cleaner Production, 250, 119470. doi:https://doi.org/10.1016/j.jclepro.2019.119470
  25. Rabaia, M. K. H., Abdelkareem, M. A., Sayed, E. T., Elsaid, K., Chae, K.-J., Wilberforce, T., & Olabi, A. G. (2021). Environmental impacts of solar energy systems: A review. Science of The Total Environment, 754, 141989. doi:https://doi.org/10.1016/j.scitotenv.2020.141989
  26. Ruggerio, C. A. (2021). Sustainability and sustainable development: A review of principles and definitions. Science of The Total Environment, 786, 147481. doi:https://doi.org/10.1016/j.scitotenv.2021.147481
  27. Sami, S., Etesami, N., & Rahimi, A. (2011). Energy and exergy analysis of an indirect solar cabinet dryer based on mathematical modeling results. Energy, 36(5), 2847-2855. doi:https://doi.org/10.1016/j.energy.2011.02.027
  28. Shamsi, H., Boroushaki, M., & Geraei, H. (2017). Performance evaluation and optimization of encapsulated cascade PCM thermal storage. Journal of Energy Storage, 11, 64-75. doi:https://doi.org/10.1016/j.est.2017.02.003
  29. Shao, Y. L., Soh, K. Y., Islam, M. R., & Chua, K. J. (2023). Thermal, exergy and economic analysis of a cascaded packed-bed tank with multiple phase change materials for district cooling system. Energy, 268, 126746. doi:https://doi.org/10.1016/j.energy.2023.126746
  30. Singh, P., Sharma, R. K., Ansu, A. K., Goyal, R., Sarı, A., & Tyagi, V. V. (2021). A comprehensive review on development of eutectic organic phase change materials and their composites for low and medium range thermal energy storage applications. Solar Energy Materials and Solar Cells, 223, 110955. doi:https://doi.org/10.1016/j.solmat.2020.110955
  31. Somu, N., Raman M R, G., & Ramamritham, K. (2021). A deep learning framework for building energy consumption forecast. Renewable and Sustainable Energy Reviews, 137, 110591. doi:https://doi.org/10.1016/j.rser.2020.110591
  32. Soni, V. (2021). Nanoadditive Particles segregation and mobility in phase change materials. International Journal of Heat and Mass Transfer, 165, 120676. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2020.120676
  33. Sukarno, R., Putra, N., Hakim, I. I., Rachman, F. F., & Indra Mahlia, T. M. (2021). Utilizing heat pipe heat exchanger to reduce the energy consumption of airborne infection isolation hospital room HVAC system. Journal of Building Engineering, 35, 102116. doi:https://doi.org/10.1016/j.jobe.2020.102116
  34. Verma, P., Varun, & Singal, S. K. (2008). Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renewable and Sustainable Energy Reviews, 12(4), 999-1031. doi:https://doi.org/10.1016/j.rser.2006.11.002
  35. Zhang, S., Feng, D., Shi, L., Wang, L., Jin, Y., Tian, L., Yan, Y. (2021). A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renewable and Sustainable Energy Reviews, 135, 110127. doi:https://doi.org/10.1016/j.rser.2020.110127