Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 11 (2024)

Glucose Sensing Optionally in Optical and Optoelectrical Modes Based on Au-TiO2 Schottky Nanojunctions

DOI
https://doi.org/10.31875/2410-2199.2024.11.01
Submitted
February 27, 2024
Published
2024-02-27

Abstract

Abstract: In recent years, metallic nanostructures have been extensively researched in the field of plasmonic for optical and optoelectronic applications such as biochemical sensing. However, an additional optoelectronic converter or spectrometer is usually required for the sensing application. Herein, the orderly-patterned Au-TiO2 Schottky junction with an Al film that we coupled, which simultaneously works as an optical reflector and conducting layer, can achieve optical sensing of glucose by exciting surface plasmon resonance associated with the environment, and meanwhile can realize glucose detection with direct electrical-signal readout by collecting the photogenerated carriers inside the Au nanostructures and TiO2 film. When used in optical mode, the designed sensor shows a sensing sensitivity of up to 1200.0 nmRIU-1 in numerical calculation, and the measured value is 346.1 nmRIU-1. When used in optoelectrical mode, the glucose sensor under one-sun illumination obtains a sensitivity of 70.0 µAM-1cm-2 in the concentration range of 0–10 mM, with a detection limit of 0.05 µM (Signal/Noise=3). Simulation and experimental results demonstrated that the Al-film-coupled Au-TiO2 Schottky nanojunction can monitor glucose concentration optionally in optical and optoelectrical modes, which presents an alternative route to the miniaturized, portable, and multi-functioned sensors.

References

  1. Lipińska W, Siuzdak K, Karczewski J, et al. Electrochemical glucose sensor based on the glucose oxidase entrapped in chitosan immobilized onto laser-processed Au-Ti electrode. Sens Actuators B Chem 2021; 330: 129409. https://doi.org/10.1016/j.snb.2020.129409
  2. Myndrul V, Coy E, Babayevska N, et al. MXene nanoflakes decorating ZnO tetrapods for enhanced performance of skin-attachable stretchable enzymatic electrochemical glucose sensor. Biosens Bioelectron 2022; 207: 114141. https://doi.org/10.1016/j.bios.2022.114141
  3. Ebbesen TW, Lezec HJ, Ghaemi HF, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998; 391(6668): 667-669. https://doi.org/10.1038/35570
  4. Chen Q, Cumming DRS. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt Express 2010; 18(13): 14056. https://doi.org/10.1364/OE.18.014056
  5. Ostfeld AE, Pacifici D. Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics. Appl Phys Lett 2011; 98(11): 113112. https://doi.org/10.1063/1.3567543
  6. Brolo AG, Kwok SC, Moffitt MG, et al. Enhanced fluorescence from arrays of nanoholes in a gold film. J Am Chem Soc 2005; 127(42): 14936-14941. https://doi.org/10.1021/ja0548687
  7. Zhang M, Chen T, Liu Y, et al. Three‐dimensional TiO2 −Ag nanopore arrays for powerful photoinduced enhanced Raman spectroscopy (PIERS) and versatile detection of toxic organics. ChemNanoMat 2019; 5(1): 55-60. https://doi.org/10.1002/cnma.201800389
  8. Kasianowicz JJ, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 1996; 93(24): 13770-13773. https://doi.org/10.1073/pnas.93.24.13770
  9. Surwade SP, Smirnov SN, Vlassiouk IV, et al. Water desalination using nanoporous single-layer graphene with tunable pore size. Nat Nanotechnol 2015; 10(5): 459-464. https://doi.org/10.1038/nnano.2015.37
  10. Li L, Wu S, Li L, et al. Gap-mode excitation, manipulation, and refractive-index sensing application by gold nanocube arrays. Nanoscale 2019; 11(12): 5467-5473. https://doi.org/10.1039/C8NR09073D
  11. Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 2007; 58(1): 267-297. https://doi.org/10.1146/annurev.physchem.58.032806.104607
  12. Kelly KL, Coronado E, Zhao LL, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 2003; 107(3): 668-677. https://doi.org/10.1021/jp026731y
  13. Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW, et al. Light passing through subwavelength apertures. Rev Mod Phys 2010; 82(1): 729-787. https://doi.org/10.1103/RevModPhys.82.729
  14. Monteiro JP, Carneiro LB, Rahman MM, et al. Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays. Sens Actuators B Chem 2013; 178: 366-370. https://doi.org/10.1016/j.snb.2012.12.090
  15. Yanik AA, Cetin AE, Huang M, et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc Natl Acad Sci 2011; 108(29): 11784-11789. https://doi.org/10.1073/pnas.1101910108
  16. Yanik AA, Huang M, Kamohara O, et al. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett 2010; 10(12): 4962-4969. https://doi.org/10.1021/nl103025u
  17. Jackman JA, Linardy E, Yoo D, et al. Plasmonic nanohole sensor for capturing single virus‐like particles toward virucidal drug evaluation. Small 2016; 12(9): 1159-1166. https://doi.org/10.1002/smll.201501914
  18. Gomez-Cruz J, Nair S, Manjarrez-Hernandez A, et al. Cost-effective flow-through nanohole array-based biosensing platform for the label-free detection of uropathogenic E. coli in real time. Biosens Bioelectron 2018; 106: 105-110. https://doi.org/10.1016/j.bios.2018.01.055
  19. Ke S, Qin L, Zhang R, et al. Towards self-driven and enzyme-free sweat glucose photoelectrochemical sensing via decorating CuO nanoparticles on TiO2 hierarchical nanotubes. Surf Interfaces 2023; 40: 103102. https://doi.org/10.1016/j.surfin.2023.103102
  20. Zhang R, Ke S, Lu W, et al. Constructing a Si-CuO core-shell nanowire heterojunction photoanode for enzyme-free and highly-sensitive glucose sensing. Appl Surf Sci 2023; 632: 157593. https://doi.org/10.1016/j.apsusc.2023.157593
  21. Tang H, Chen CJ, Huang Z, et al. Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective. J Chem Phys 2020; 152(22): 220901. https://doi.org/10.1063/5.0005334
  22. Saha S, Victorious A, Soleymani L. Modulating the photoelectrochemical response of titanium dioxide (TiO2) photoelectrodes using gold (Au) nanoparticles excited at different wavelengths. Electrochim Acta 2021; 380: 138154. https://doi.org/10.1016/j.electacta.2021.138154
  23. Esmaeili FO, Tasviri M, Mohaghegh N. A Cdx Zn1-x S/TiO2 nanotube array electrode for a highly sensitive and selective nonenzymatic photoelectrochemical glucose sensor. New J Chem 2022; 46(20): 9880-9888. https://doi.org/10.1039/D2NJ00549B
  24. Yu Y, Qin L, Lu W, et al. Unbiased glucose biosensing based on Al film coupled TiO2 film/Au nanoparticles Schottky junction toward low concentration and wide range detection. ACS Appl Nano Mater 2022; 5(8): 11776-11786. https://doi.org/10.1021/acsanm.2c02770
  25. Li YL, Tian J, Shi DJ, et al. CdSe/TiO2NTs heterojunction-based nonenzymatic photoelectrochemical sensor for glucose detection. Langmuir 2023; 39(42): 14935-14944. https://doi.org/10.1021/acs.langmuir.3c01685
  26. Li M, Wang H, Wang X, et al. Ti3C2/Cu2O heterostructure based signal-off photoelectrochemical sensor for high sensitivity detection of glucose. Biosens Bioelectron 2019; 142: 111535. https://doi.org/10.1016/j.bios.2019.111535