Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 10 (2023)

Excellent Absorption of LaCoxO3 Over Full Solar Spectrum and Direct Photothermal Energy Storage of Ca(OH)2–LaCoxO3

DOI
https://doi.org/10.31875/2410-2199.2023.10.09
Submitted
March 2, 2024
Published
2023-12-31

Abstract

Abstract: Photothermal conversion is a vital way for solar energy applications. The strong absorption of near Infrared light is essential for excellent photothermal performance. In this study, we demonstrated that nano LaCoxO3 is able to harvest light intensely across the full solar spectrum with high photothermal temperature. A core-shell-like structure of LaCoxO3-coated Ca(OH)2 particles was fabricated and shows excellent photothermal conversion, high kinetics of dehydration and remarkable cycle stability of heat storage and release. The photothermal dehydration-conversion of Ca(OH)2 increases 8.4-fold. Results demonstrate the multifunctionality of LaCoxO3, intensifying light harvesting, high photothermal conversion, good stability, considerable strength, and porous framework favouring the performance of photothermal storage and release cycles. LaCoxO3–Ca(OH)2 composite can simultaneously harvest light and store thermal energy.

References

  1. A.J. Carrillo, J. Gonzalez-Aguilar, M. Romero, J.M. Coronado, Solar Energy on Demand: A review on high temperature thermochemical heat storage systems and materials, Chemical Reviews, 119 (2019) 4777-4816. https://doi.org/10.1021/acs.chemrev.8b00315
  2. S. Koohi-Fayegh, M.A. Rosen, A review of energy storage types, applications and recent developments, Journal of Energy Storage, 27 (2020) 101047. https://doi.org/10.1016/j.est.2019.101047
  3. E. Gonzalez-Roubaud, D. Perez-Osorio, C. Prieto, Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts, Renewable & Sustainable Energy Reviews, 80 (2017) 133-148. https://doi.org/10.1016/J.RSER.2017.05.084
  4. P.E.S. Jimenez, A. Perejon, M.B. Guerrero, J.M. Valverde, C. Ortiz, L.A.P. Maqueda, High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants, Applied Energy, 235 (2019) 543-552. https://doi.org/10.1016/j.apenergy.2018.10.131
  5. R. Bravo, C. Ortiz, R. Chacartegui, D. Friedrich, Hybrid solar power plant with thermochemical energy storage: A multi-objective operational optimisation, Energy Conversion and Management, 205 (2020) 112421. https://doi.org/10.1016/j.enconman.2019.112421
  6. Y.T. Li, M.T. Li, Z.B. Xu, Z.H. Meng, Q.P. Wu, Dehydration kinetics and thermodynamics of ZrO(NO3)2-doped Ca(OH)2 for chemical heat storage, Chemical Engineering Journal, 399 (2020) 125841. https://doi.org/10.1016/j.enconman.2019.112421
  7. A. Fopah-Lele, J.G. Tamba, A review on the use of SrBr2‧ 6H2O as a potential material for low temperature energy storage systems and building applications, Solar Energy Materials and Solar Cells, 164 (2017) 175-187.
  8. https://doi.org/10.1016/j.solmat.2017.02.018
  9. C. Ortiz, J.M. Valverde, R. Chacartegui, L.A. Perez-Maqueda, P. Gimenez, The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in Concentrating Solar Power plants, Renewable & Sustainable Energy Reviews, 113 (2019) 109252. https://doi.org/10.1016/j.rser.2019.109252
  10. M.T. Dunstan, F. Donat, A.H. Bork, C.P. Grey, C.R. Mueller, CO2 capture at medium to high temperature using solid oxide-based sorbents: Fundamental Aspects, Mechanistic Insights, and Recent Advances, Chemical Reviews, 121 (2021) 12681-12745. https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00100
  11. M.-T. Li, Y.-T. Li, L. Sun, Z.-B. Xu, Y. Zhao, Z.-H. Meng, Q.-P. Wu, Tremendous enhancement of heat storage efficiency for Mg (OH)2-MgO-H2O thermochemical system with addition of Ce(NO3)3 and LiOH, Nano Energy, 81 (2021) 105603. https://doi.org/10.1016/j.nanoen.2020.105603
  12. S. Li, J. Liu, T. Tan, J. Nie, H. Zhang, Optimization of LiNO3-Mg(OH)2 composites as thermo-chemical energy storage materials, Journal of Environmental Management, 262 (2020) 110258. https://doi.org/10.1016/j.jenvman.2020.110258
  13. M. Liu, N.H.S. Tay, S. Bell, M. Belusko, R. Jacob, G. Will, W. Saman, F. Bruno, Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies, Renewable & Sustainable Energy Reviews, 53 (2016) 1411-1432. https://doi.org/10.1016/j.rser.2015.09.026
  14. Y. Da, Y. Xuan, L. Teng, K. Zhang, X. Liu, Y. Ding, Calcium-based composites for direct solar-thermal conversion and thermochemical energy storage, Chemical Engineering Journal, 382 (2020) 122815. https://doi.org/10.1016/j.cej.2019.122815
  15. H.B. Zheng, C. Song, C. Bao, X.L. Liu, Y.M. Xuan, Y.L. Li, Y.L. Ding, Dark calcium carbonate particles for simultaneous full-spectrum solar thermal conversion and large-capacity thermochemical energy storage, Solar Energy Materials and Solar Cells, 207 (2020) 110364. https://doi.org/10.1016/j.solmat.2019.110364
  16. B. Li, Y. Li, Y. Dou, Y. Wang, J. Zhao, T. Wang, SiC/Mn co-doped CaO pellets with enhanced optical and thermal properties for calcium looping thermochemical heat storage, Chemical Engineering Journal, 423 (2021) 130305. https://doi.org/10.1016/j.cej.2021.130305
  17. C. Song, X.L. Liu, H.B. Zheng, C. Bao, L. Teng, Y. Da, F. Jiang, C. Li, Y.L. Li, Y.M. Xuan, Y.L. Ding, Decomposition kinetics of Al- and Fe-doped calcium carbonate particles with improved solar absorbance and cycle stability, Chemical Engineering Journal, 406 (2021) 126282. https://doi.org/10.1016/j.cej.2020.126282
  18. Y. Da, J.L. Zhou, F.D. Zeng, Calcium-based composites directly irradiated by solar spectrum for thermochemical energy storage, Chemical Engineering Journal, 456 (2023) 140986. https://doi.org/10.1016/j.cej.2022.140986
  19. Y. Da, J.L. Zhou, Multi-doping strategy modified calcium-based materials for improving the performance of direct solar-driven calcium looping thermochemical energy storage, Solar Energy Materials and Solar Cells, 238 (2022) 111613. https://doi.org/10.1016/j.solmat.2022.111613
  20. A. Laref, S. Laref, S. Bin-Omran, Electronic structure, X-ray absorption, and optical spectroscopy of LaCoxO3 in the ground-state and excited-states, Journal of Computational Chemistry, 33 (2012) 673-684. https://doi.org/10.1002/jcc.22896
  21. J. Li, W. Zhang, W. Ji, J. Wang, N. Wang, W. Wu, Q. Wu, X. Hou, W. Hu, L. Li, Near infrared photothermal conversion materials: mechanism, preparation, and photothermal cancer therapy applications, Journal of Materials Chemistry B, 9 (2021) 7909-7926. https://doi.org/10.1039/d1tb01310f
  22. J. Li, Y. Zhang, Y. Huang, B. Luo, L. Jing, D. Jing, Noble-metal free plasmonic nanomaterials for enhanced photocatalytic applications-A review, Nano Research, 12 (2022) 10268-10291. https://doi.org/10.1007/s12274-022-4700-0
  23. T.A. Wani, P. Garg, S. Bera, S. Bhattacharya, S. Dutta, H. Kumar, A. Bera, Narrow-Bandgap LaMO3 (M = Ni, Co) nanomaterials for efficient interfacial solar steam generation, Journal of Colloid and Interface Science, 612 (2022) 203-212. https://doi.org/10.1016/j.jcis.2021.12.158
  24. M. Xu, X. Huai, J. Cai, Agglomeration behavior of calcium hydroxide/calcium oxide as thermochemical heat storage material: A reactive molecular dynamics study, Journal of Physical Chemistry C, 121 (2017) 3025-3033. https://doi.org/10.1021/acs.jpcc.6b08615
  25. T. Wu, X. Li, C.-H. Weng, F. Ding, F. Tan, R. Duan, Highly efficient LaMO3 (M = Co, Fe) perovskites catalyzed Fentons reaction for degradation of direct blue 86, Environmental Research, 227 (2023) 115756. https://doi.org/10.1016/j.envres.2023.115756
  26. J.T. Kloprogge, L.V. Duong, B.J. Wood, R.L. Frost, XPS study of the major minerals in bauxite: Gibbsite, bayerite and (pseudo-) boehmite, Journal of Colloid and Interface Science, 296 (2006) 572-576. https://doi.org/10.1016/j.jcis.2005.09.054
  27. H. Guo, X. Kou, Y. Zhao, S. Wang, Q. Sun, X. Ma, Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent: Textural properties, electron donation, and oxygen vacancy, Chemical Engineering Journal, 334 (2018) 237--246. https://doi.org/10.1016/j.cej.2017.09.198
  28. S. Jayapandi, P. Soundarrajan, S.S. Kumar, D. Lakshmi, M.D. Albaqami, M. Ouladsmane, G. Mani, Efficient Z-scheme LaCoxO3/In2O3 heterostructure photocatalyst for fast dye degradation under visible light irradiation, Research on Chemical Intermediates, 48 (2022) 4419-4442. https://doi.org/10.1007/s11164-022-04832-4
  29. S. Ben Hammouda, F. Zhao, Z. Safaei, V. Srivastava, D.L. Ramasamy, S. Iftekhar, S. Kalliola, M. Sillanpaa, Degradation and mineralization of phenol in aqueous medium by heterogeneous monopersulfate activation on nanostructured cobalt based-perovskite catalysts ACoO3 (A = La, Ba, Sr and Ce): Characterization, kinetics and mechanism study, Applied Catalysis B-Environmental, 215 (2017) 60-73. https://doi.org/10.1016/j.apcatb.2017.05.051
  30. N. Orlovskaya, D. Steinmetz, S. Yarmolenko, D. Pai, J. Sankar, J. Goodenough, Detection of temperature- and stress-induced modifications of LaCoO3 by micro-Raman spectroscopy - art. no. 014122, Physical Review B, 72 (2005) 014122. http://dx.doi.org/10.1103/PhysRevB.72.014122
  31. M.M. Natile, E. Ugel, C. Maccato, A. Glisenti, LaCoxO3: Effect of synthesis conditions on properties and reactivity, Applied Catalysis B: Environmental, 72 (2007) 351-362. https://doi.org/10.1016/j.apcatb.2006.11.011
  32. X.M. Cui, Q.F. Ruan, X.L. Zhu, X.Y. Xia, J.T. Hu, R.F. Fu, Y. Li, J.F. Wang, H.X. Xu, Photothermal nanomaterials: A powerful light-to-heat converter, Chemical Reviews, 123 (2023) 6891-6952. https://doi.org/10.1021/acs.chemrev.3c00159
  33. J. Lu, J. Wu, W. Xu, H. Cheng, X. Qi, Q. Li, Y. Zhang, Y. Guan, Y. Ling, Z. Zhang, Room temperature synthesis of tetragonal BiOI photocatalyst with surface heterojunction between (001) facets and (110) facets, Materials Letters, 219 (2018) 260-264. https://doi.org/10.1016/j.matlet.2018.01.175
  34. J.U. Kim, S. Lee, S.J. Kang, T.-i. Kim, Materials and design of nanostructured broadband light absorbers for advanced light-to-heat conversion, Nanoscale, 10 (2018) 21555-21574. https://doi.org/10.1039/c8nr06024j
  35. Y. Liu, J. Zhao, S. Zhang, D. Li, X. Zhang, Q. Zhao, B. Xing, Advances and challenges of broadband solar absorbers for efficient solar steam generation, Environmental Science-Nano, 9 (2022) 2264-2296. https://doi.org/10.1039/D2EN00070A
  36. M. Hartmann, M. Thommes, W. Schwieger, Hierarchically-ordered zeolites: A critical assessment, Advanced Materials Interfaces, 8 (2021) 2001841. https://doi.org/10.1002/admi.202001841