Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 11 (2024)

Design Principle and Development Trends of Silicon-Based Anode Binders for Lithium-ion Batteries: A Mini Review

DOI
https://doi.org/10.31875/2410-2199.2024.11.04
Submitted
May 15, 2024
Published
2024-05-15

Abstract

Abstract: Silicon (Si), recognized as a promising alternative material for the anodes of lithium-ion batteries, boasts a high theoretical specific capacity and abundant natural availability. During the preparation of silicon-based anodes, binders play a pivotal role in ensuring the cohesion of silicon particles, conductive agents, and current collectors. The structure and performance of these binders are critical for the mechanical stability, electrical conductivity, and stress dissipation capacity of the anodes. This review initially outlines the structural characteristics of various binders, including linear, branched, and three-dimensional cross-linked types. It then delves into the relationship between the structure and properties of these binders in the context of their application in high-performance lithium-ion batteries, focusing on their mechanical properties, electrical conductivity, and self-healing capabilities. Particular attention is given to the design strategies for binders that facilitate stress dissipation, with an emphasis on integrating multifunctional polymer binders renowned for their superior conductive and self-healing features. Such binders contribute to the formation of a robust three-dimensional network structure via multiple bonding mechanisms, including chemical, non-covalent, and coordination interactions. This configuration significantly enhances the adhesion between silicon particles, thereby facilitating the efficient dissipation of stress, which is a key aspect for ensuring the long-term cycling stability of lithium-ion batteries. Lastly, the paper explores future development directions for silicon anode binders, advocating for a thorough investigation into the synergy of diverse structural and functional combinations, with the aim of advancing the performance and practical application of silicon-based lithium-ion batteries.

References

  1. Wang H, Yao Y, He Z, et al. A Highly Stretchable Liquid Metal Polymer as Reversible Transitional Insulator and Conductor[J]. Advanced Materials, 2019, 31(23): 1901337. https://doi.org/10.1002/adma.201901337
  2. Shi G, Peng X, Zeng J, et al. A Liquid Metal Microdroplets Initialized Hemicellulose Composite for 3D Printing Anode Host in Zn‐Ion Battery[J]. Advanced Materials, 2023, 35(25): 2300109. https://doi.org/10.1002/adma.202300109
  3. Lee W, Kim H, Kang I, et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board[J]. Science, 2022, 378(6620): 637-641. https://doi.org/10.1126/science.abo6631
  4. Zhang C, Qian X, Wang D, et al. Building Ion-Conductive Supramolecular Elastomeric Protective Layer via Dynamic Hard Domain Design for Stable Zinc Metal Anodes[J]. ACS Applied Materials & Interfaces, 2023, 15(41): 48185-48195. https://doi.org/10.1021/acsami.3c10154
  5. Kim T, Song W, Son D Y, et al. Lithium-ion batteries: outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7): 2942-2964. https://doi.org/10.1039/C8TA10513H
  6. Huang W, Wang W, Wang Y, et al. Overcoming the fundamental challenge of PVDF binder use with silicon anodes with a super-molecular nano-layer[J]. Journal of Materials Chemistry A, 2021, 9(3): 1541-1551. https://doi.org/10.1039/D0TA10301B
  7. Cheng H, Shapter J G, Li Y, et al. Recent progress of advanced anode materials of lithium-ion batteries[J]. Journal of Energy Chemistry, 2021, 57: 451-468. https://doi.org/10.1016/j.jechem.2020.08.056
  8. Shi Y, Zhou X, Yu G. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries[J]. Accounts of Chemical Research, 2017, 50(11): 2642-2652. https://doi.org/10.1021/acs.accounts.7b00402
  9. Ramdhiny M N, Jeon J W. Design of multifunctional polymeric binders in silicon anodes for lithium-ion batteries[J]. Carbon Energy, 2022, n/a(n/a): e356. https://doi.org/10.1002/cey2.356
  10. Zhao Z, Chen F, Han J, et al. Revival of Microparticular Silicon for Superior Lithium Storage[J]. Advanced Energy Materials, 2023, 13(24): 2300367. https://doi.org/10.1002/aenm.202300367
  11. Zhao Y M, Yue F S, Li S C, et al. Advances of polymer binders for silicon-based anodes in high energy density lithium-ion batteries[J]. InfoMat, 2021, 3(5): 460-501. https://doi.org/10.1002/inf2.12185
  12. Park S J, Zhao H, Ai G, et al. Side-Chain Conducting and Phase-Separated Polymeric Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries[J]. Journal of the American Chemical Society, 2015, 137(7): 2565-2571. https://doi.org/10.1021/ja511181p
  13. Liu Y, Shao R, Jiang R, et al. A review of existing and emerging binders for silicon anodic Li-ion batteries[J]. Nano Research, 2023, 16(5): 6736-6752. https://doi.org/10.1007/s12274-022-5281-7
  14. Zhu J, Yang J, Xu Z, et al. Silicon anodes protected by a nitrogen-doped porous carbon shell for high-performance lithium-ion batteries[J]. Nanoscale, 2017, 9(25): 8871-8878. https://doi.org/10.1039/C7NR01545C
  15. Nguyen H T, Zamfir M R, Duong L D, et al. Alumina-coated silicon-based nanowire arrays for high quality Li-ion battery anodes[J]. Journal of Materials Chemistry, 2012, 22(47): 24618. https://doi.org/10.1039/c2jm35125k
  16. Han H B, Zhou S S, Zhang D J, et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties[J]. Journal of Power Sources, 2011, 196(7): 3623-3632. https://doi.org/10.1016/j.jpowsour.2010.12.040
  17. Zhao J, Jing J, Li W, et al. Noncovalent crosslinked liquid metal-incorporated polymer binder based on multiple dynamic bonds for silicon microparticle anode[J]. Energy Storage Materials, 2023, 63: 102991. https://doi.org/10.1016/j.ensm.2023.102991
  18. Li Z, Wan Z, Zeng X, et al. A robust network binder via localized linking by small molecules for high-areal-capacity silicon anodes in lithium-ion batteries[J]. Nano Energy, 2021, 79: 105430. https://doi.org/10.1016/j.nanoen.2020.105430
  19. Zhang J, Wang N, Zhang W, et al. A cycling robust network binder for high performance Si-based negative electrodes for lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2020, 578: 452-460. https://doi.org/10.1016/j.jcis.2020.06.008
  20. Ma Y, Ma J, Cui G. Small things make big deal: Powerful binders of lithium batteries and post-lithium batteries[J]. Energy Storage Materials, 2019, 20: 146-175. https://doi.org/10.1016/j.ensm.2018.11.013
  21. Beattie S D, Larcher D, Morcrette M, et al. Si Electrodes for Li-Ion Batteries-A New Way to Look at an Old Problem[J]. Journal of The Electrochemical Society, 2008, 155(2): A158. https://doi.org/10.1149/1.2817828
  22. Ren W F, Le J B, Li J T, et al. Improving the Electrochemical Property of Silicon Anodes through Hydrogen-Bonding Cross-Linked Thiourea-Based Polymeric Binders[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 639-649. https://doi.org/10.1021/acsami.0c18743
  23. Cano Z P, Banham D, Ye S, et al. Batteries and fuel cells for emerging electric vehicle markets[J]. Nature Energy, 2018, 3(4): 279-289. https://doi.org/10.1038/s41560-018-0108-1
  24. Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. https://doi.org/10.1038/35104644
  25. Liao H, He W, Liu N, et al. Facile In Situ Cross-Linked Robust Three-Dimensional Binder for High-Performance SiOx Anodes in Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 49313-49321. https://doi.org/10.1021/acsami.1c13937
  26. Liu Z, Fang C, He X, et al. In Situ-Formed Novel Elastic Network Binder for a Silicon Anode in Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(39): 46518-46525. https://doi.org/10.1021/acsami.1c09607
  27. Kim T, Choi S, Ryu J, et al. Surficial amide-enabled integrated organic anode-binder electrode for electrochemical reversibility and fast redox kinetics in lithium-ion batteries[J]. Applied Surface Science, 2022, 601: 154220. https://doi.org/10.1016/j.apsusc.2022.154220
  28. Zhang Q, Zhang F, Zhang M, et al. A Highly Efficient Silicone-Modified Polyamide Acid Binder for Silicon-Based Anode in Lithium-Ion Batteries[J]. ACS Applied Energy Materials, 2021, 4(7): 7209-7218. https://doi.org/10.1021/acsaem.1c01294
  29. Tang W, Feng L, Wei X, et al. Three-Dimensional Crosslinked PAA-TA Hybrid Binders for Long-Cycle-Life SiOx Anodes in Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(51): 56910-56918. https://doi.org/10.1021/acsami.2c19344
  30. Zhang S, Liu K, Xie J, et al. An Elastic Cross-Linked Binder for Silicon Anodes in Lithium-Ion Batteries with a High Mass Loading[J]. ACS Applied Materials & Interfaces, 2023, 15(5): 6594-6602. https://doi.org/10.1021/acsami.2c16997
  31. Dang D, Wang Y, Wang M, et al. Lithium Substituted Poly(acrylic acid) as a Mechanically Robust Binder for Low-Cost Silicon Microparticle Electrodes[J]. ACS Applied Energy Materials, 2020, 3(11): 10940-10949. https://doi.org/10.1021/acsaem.0c01923
  32. Jiao X, Yuan X, Yin J, et al. Multiple Network Binders via Dual Cross-Linking for Silicon Anodes of Lithium-Ion Batteries[J]. ACS Applied Energy Materials, 2021, 4(9): 10306-10313. https://doi.org/10.1021/acsaem.1c02231
  33. Miranda A, Li X, Haregewoin A M, et al. A Comprehensive Study of Hydrolyzed Polyacrylamide as a Binder for Silicon Anodes[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44090-44100. https://doi.org/10.1021/acsami.9b13257
  34. Kim J, Kim G, Park Y K, et al. Structure‐Performance Relationship of Aromatic Polymer Binder for Silicon Anode in Lithium‐Ion Batteries[J]. Advanced Functional Materials, 2023, 33(44): 2303810. https://doi.org/10.1002/adfm.202303810
  35. Jiao X, Yin J, Xu X, et al. Highly Energy-Dissipative, Fast Self-Healing Binder for Stable Si Anode in Lithium-Ion Batteries[J]. Advanced Functional Materials, 2021, 31(3): 2005699. https://doi.org/10.1002/adfm.202005699
  36. Wang X, Liu S, Zhang Y, et al. Highly Elastic Block Copolymer Binders for Silicon Anodes in Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 38132-38139. https://doi.org/10.1021/acsami.0c10005
  37. Zhao Y, Yang L, Zuo Y, et al. Conductive Binder for Si Anode with Boosted Charge Transfer Capability via n-Type Doping[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 27795-27800. https://doi.org/10.1021/acsami.8b08843
  38. Li Z, Wu G, Yang Y, et al. An Ion‐Conductive Grafted Polymeric Binder with Practical Loading for Silicon Anode with High Interfacial Stability in Lithium‐Ion Batteries[J]. Advanced Energy Materials, 2022, 12(29): 2201197. https://doi.org/10.1002/aenm.202201197
  39. Zhang G, Yang Y, Chen Y, et al. A Quadruple-Hydrogen-Bonded Supramolecular Binder for High-Performance Silicon Anodes in Lithium-Ion Batteries[J]. Small, 2018, 14(29): 1801189. https://doi.org/10.1002/smll.201801189
  40. Jolley M J, Pathan T S, Wemyss Alan M, et al. Development and Application of a Poly(acrylic acid)-Grafted Styrene-Butadiene Rubber as a Binder System for Silicon-Graphite Anodes in Li-Ion Batteries[J]. ACS Applied Energy Materials, 2023, 6(1): 496-507. https://doi.org/10.1021/acsaem.2c03489
  41. Li X, Chen H, Chen M, et al. Ionic Liquid-Decorated Copolymer Binders for Silicon/Graphite Anodes with Enhanced Rate Capability and Excellent Cycle Stability[J]. ACS Applied Energy Materials, 2021, 4(11): 12709-12717. https://doi.org/10.1021/acsaem.1c02422
  42. Han D, Han I K, Son H B, et al. Layering Charged Polymers Enable Highly Integrated High‐Capacity Battery Anodes[J]. Advanced Functional Materials, 2023, 33(17): 2213458. https://doi.org/10.1002/adfm.202213458
  43. Cao P F, Naguib M, Du Z, et al. Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3470-3478. https://doi.org/10.1021/acsami.7b13205
  44. Ma L, Fu X, Zhao F, et al. High-Performance Carboxymethyl Cellulose Integrating Polydopamine Binder for Silicon Microparticle Anodes in Lithium-Ion Batteries[J]. ACS Applied Energy Materials, 2023, 6(3): 1714-1722. https://doi.org/10.1021/acsaem.2c03606
  45. Dufficy M K, Corder R D, Dennis K A, et al. Guar Gel Binders for Silicon Nanoparticle Anodes: Relating Binder Rheology to Electrode Performance[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51403-51413. https://doi.org/10.1021/acsami.1c10776
  46. Luo C, Du L, Wu W, et al. Novel Lignin-Derived Water-Soluble Binder for Micro Silicon Anode in Lithium-Ion Batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12621-12629. https://doi.org/10.1021/acssuschemeng.8b01161
  47. Cai X, Xu J, Shao Y, et al. Carboxymethyl Three-Dimensional Cross-Linked Biopolymer Binder for High-Performance Silicon Anodes in Lithium-Ion Batteries[J]. ACS Applied Energy Materials, 2023, 6(9): 4559-4569. https://doi.org/10.1021/acsaem.2c03846
  48. Li L, Zuo Z, Shang H, et al. In-situ constructing 3D graphdiyne as all-carbon binder for high-performance silicon anode[J]. Nano Energy, 2018, 53: 135-143. https://doi.org/10.1016/j.nanoen.2018.08.039
  49. Preman A N, Lee H, Yoo J, et al. Progress of 3D network binders in silicon anodes for lithium ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(48): 25548-25570. https://doi.org/10.1039/D0TA07713E
  50. Liu T, Chu Q, Yan C, et al. Interweaving 3D Network Binder for High‐Areal‐Capacity Si Anode through Combined Hard and Soft Polymers[J]. Advanced Energy Materials, 2019, 9(3): 1802645. https://doi.org/10.1002/aenm.201802645
  51. Sun C, Zhang H, Mu P, et al. Covalently Cross-Linked Chemistry of a Three-Dimensional Network Binder at Limited Dosage Enables Practical Si/C Composite Electrode Applications[J]. ACS Nano, 2024: acsnano.3c11286. https://doi.org/10.1021/acsnano.3c11286
  52. Guo R, Zhang S, Ying H, et al. New, Effective, and Low-Cost Dual-Functional Binder for Porous Silicon Anodes in Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14051-14058. https://doi.org/10.1021/acsami.8b21936
  53. Kang T, Chen J, Cui Y, et al. Three-Dimensional Rigidity-Reinforced SiOx Anodes with Stabilized Performance Using an Aqueous Multicomponent Binder Technology[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26038-26046. https://doi.org/10.1021/acsami.9b08389
  54. Nguyen V A, Kuss C. Review-Conducting Polymer-Based Binders for Lithium-Ion Batteries and Beyond[J]. Journal of The Electrochemical Society, 2020, 167(6): 065501. https://doi.org/10.1149/1945-7111/ab856b
  55. Su Y, Feng X, Zheng R, et al. Binary Network of Conductive Elastic Polymer Constraining Nanosilicon for a High-Performance Lithium-Ion Battery[J]. ACS Nano, 2021, 15(9): 14570-14579. https://doi.org/10.1021/acsnano.1c04240
  56. Dong Y, Zhang B, Zhao F, et al. Dendrimer Based Binders Enable Stable Operation of Silicon Microparticle Anodes in Lithium-Ion Batteries[J]. Small, 2023, 19(24): 2206858. https://doi.org/10.1002/smll.202206858
  57. Ko S, Baek M J, Wi T U, et al. Understanding the Role of a Water-Soluble Catechol-Functionalized Binder for Silicon Anodes by Diverse In Situ Analyses[J]. ACS Materials Letters, 2022, 4(5): 831-839. https://doi.org/10.1021/acsmaterialslett.2c00013
  58. Deng L, Zheng Y, Zheng X, et al. Design Criteria for Silicon-Based Anode Binders in Half and Full Cells[J]. Advanced Energy Materials, 2022, 12(31): 2200850. https://doi.org/10.1002/aenm.202200850
  59. Hu S, Wang L, Huang T, et al. A conductive self-healing hydrogel binder for high-performance silicon anodes in lithium-ion batteries[J]. Journal of Power Sources, 2020, 449: 227472. https://doi.org/10.1016/j.jpowsour.2019.227472
  60. Chen J, Li Y, Wu X, et al. Dynamic hydrogen bond cross-linking binder with self-healing chemistry enables high-performance silicon anode in lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2024, 657: 893-902. https://doi.org/10.1016/j.jcis.2023.12.057
  61. Rajeev K K, Nam J, Jang W, et al. Polysaccharide-based self-healing polymer binder via Schiff base chemistry for high-performance silicon anodes in lithium-ion batteries[J]. Electrochimica Acta, 2021, 384: 138364. https://doi.org/10.1016/j.electacta.2021.138364
  62. Yang Y, Wu S, Zhang Y, et al. Towards efficient binders for silicon based lithium-ion battery anodes[J]. Chemical Engineering Journal, 2021, 406: 126807. https://doi.org/10.1016/j.cej.2020.126807
  63. Hu L, Jin M, Zhang Z, et al. Interface‐Adaptive Binder Enabled by Supramolecular Interactions for High‐Capacity Si/C Composite Anodes in Lithium‐Ion Batteries[J]. Advanced Functional Materials, 2022, 32(26): 2111560. https://doi.org/10.1002/adfm.202111560
  64. Cao P F, Yang G, Li B, et al. Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes[J]. ACS Energy Letters, 2019, 4(5): 1171-1180. https://doi.org/10.1021/acsenergylett.9b00815
  65. Lee S H, Lee J H, Nam D H, et al. Epoxidized Natural Rubber/Chitosan Network Binder for Silicon Anode in Lithium-Ion Battery[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16449-16457. https://doi.org/10.1021/acsami.8b01614
  66. Wu S, Yang Y, Liu C, et al. In-Situ Polymerized Binder: A Three-in-One Design Strategy for All-Integrated SiOx Anode with High Mass Loading in Lithium Ion Batteries[J]. ACS Energy Letters, 2021, 6(1): 290-297. https://doi.org/10.1021/acsenergylett.0c02342
  67. Wang Y, Xu H, Chen X, et al. Novel constructive self-healing binder for silicon anodes with high mass loading in lithium-ion batteries[J]. Energy Storage Materials, 2021, 38: 121-129. https://doi.org/10.1016/j.ensm.2021.03.003
  68. Hu L, Zhang X, Zhao P, et al. Gradient H‐Bonding Binder Enables Stable High‐Areal‐Capacity Si‐Based Anodes in Pouch Cells[J]. Advanced Materials, 2021, 33(52): 2104416. https://doi.org/10.1002/adma.202104416
  69. Xu Z, Chu X, Wang K, et al. Stress-dissipated conductive polymer binders for high-stability silicon anode in lithium-ion batteries[J]. Journal of Materiomics, 2023, 9(2): 378-386. https://doi.org/10.1016/j.jmat.2022.09.013
  70. Lee H A, Shin M, Kim J, et al. Designing Adaptive Binders for Microenvironment Settings of Silicon Anode Particles[J]. Advanced Materials, 2021, 33(13): 2007460. https://doi.org/10.1002/adma.202007460
  71. Tong Y, Jin S, Xu H, et al. An Energy Dissipative Binder for Self‐Tuning Silicon Anodes in Lithium‐Ion Batteries[J]. Advanced Science, 2023, 10(2): 2205443. https://doi.org/10.1002/advs.202205443
  72. Dong P, Zhang X, Zamora J, et al. Silk fibroin-based biopolymer composite binders with gradient binding energy and strong adhesion force for high-performance micro-sized silicon anodes[J]. Journal of Energy Chemistry, 2023, 80: 442-451. https://doi.org/10.1016/j.jechem.2023.02.010
  73. Cai Y, Li Y, Jin B, et al. Dual Cross-Linked Fluorinated Binder Network for High-Performance Silicon and Silicon Oxide Based Anodes in Lithium-Ion Batteries [J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46800-46807. https://doi.org/10.1021/acsami.9b16387
  74. Weng Z, Di S, Chen L, et al. Random Copolymer Hydrogel as Elastic Binder for the SiOx Microparticle Anode in Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(37): 42494-42503. https://doi.org/10.1021/acsami.2c12128
  75. Xie Z H, Rong M Z, Zhang M Q. Dynamically Cross-Linked Polymeric Binder-Made Durable Silicon Anode of a Wide Operating Temperature Li-Ion Battery[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28737-28748. https://doi.org/10.1021/acsami.1c01472