Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 11 (2024)

Properties of ((CH3NH3)1-xCsx)3Bi2I9: (x=0-1.0) Hybrid Perovskite Solar Cells with Chlorobenzene Treatment

DOI
https://doi.org/10.31875/2410-2199.2024.11.05
Submitted
May 31, 2024
Published
2024-05-31

Abstract

Abstract: Hybrid-perovskite solar cells, a promising lead-free perovskite material, have been attracted for optoelectronic applications due to an excellent optical and electrical properties with low production cost. Herein, methylammonium bismuth iodide and cesium bismuth iodide were mixed to form hybrid structure for the improvement of photovoltaic properties, which were fabricated using all-solution processed multi-step spin coating technique with changing the composition, x, of CBI, ((CH3NH3)1-xCsx)3Bi2I9; (x=0 – 1.0). Chlorobenzene was added to the solution to improve the surface morphology. By optimizing the composition of CBI in MBI, the morphology, structural and optical properties of HPeSCs have been improved. It showed that the morphology is homogeneous, compact and a uniform layer, while the crystallinity shows an improvement as well. The open circuit voltage, the short circuit current and the power conversion efficiency were much improved with using hybrid structure. Our study shows that the significance of the hybridization process gives a new route in fabricating a better active absorber layer of PeSCs in the future.

References

  1. Lyu M, Yun J, Cai M., Jiao Y, Bernhardt PV, Zhang M, Wang Q, Du A, Wang H, Liu G, and Wang L, Nano Res. 2016; 9: 692-702. https://doi.org/10.1007/s12274-015-0948-y
  2. Hoye RLZ, Brandt RE, Osherov A, Stevanovic V, Stranks SD, Wilson MWB, Kim H, Akey AJ, Perkins JD, Kurchin RC, Poindexter JR, Wang EN, Bawendi MG, and Bulovic V, Chem. Eur. J. Commun. 2016; 80401: 2605-2610. https://doi.org/10.1002/chem.201505055
  3. Mariyappan Chowdhury PTH, Subashchandran Bedja SI, Ghaithan HM, and Islam A, Sustain. Energy Fuels 2020; 4: 5042-5049. https://doi.org/10.1039/D0SE00786B
  4. Johansson MB, Zhu H, and Johansson EMJ, J. Phys. Chem. Lett. 2016; 7: 3467-3471. https://doi.org/10.1021/acs.jpclett.6b01452
  5. Öz S, Jena AK, Kulkarni A, Mouri K, Yokoyama T, Takei I, Ünlü F, Mathur S, and Miyasaka T, ACS energy Lett. 2020; 5: 1292-1299. https://doi.org/10.1021/acsenergylett.0c00244
  6. Sanders S, Stümmler D, Pfeiffer P, Ackermann N, Simkus G, Heuken M, Baumann PK, Vescan A, and Kalisch H, Sci. Rep. 2019; 9: 9774. https://doi.org/10.1038/s41598-019-46199-4
  7. Riley EB, Vladan S, David SG, and Tonio B, MRS Comm. 2015; 5: 265-275. https://doi.org/10.1557/mrc.2015.26
  8. E. B. Rachel EB, Daniel JS, Tomas L, Andrea RB, Rebecca AB, William HN, George FB, Eric TH, and Michael DM, J. Phy. Chem. Lett. 2016; 7: 746-751. https://doi.org/10.1021/acs.jpclett.6b00002
  9. Park BW, Philippe B, Zhang X, Rensmo H, Boschloo G, and Johansson EMJ, Adv. Mater. 2015; 9: 6806-6813. https://doi.org/10.1002/adma.201501978
  10. McClure ET, Ball MR, Windl W, and Woodward PM, ChemInform. 2016; 47. https://doi.org/10.1002/chin.201620017
  11. Sano Y, Satoh H, Chiba M, Okamoto M, Serizawa K, Nakashima H, and Omae K, J. Occup. Health. 2005; 47: 293-298. https://doi.org/10.1539/joh.47.293
  12. Ma Z, Peng S, Wu SY, Fang X, Chen X, Jia X, Zhang Yuan KN, Ding J, and Dai N, Phys. B Condens. Matter. 2017; 526: 136-142. https://doi.org/10.1016/j.physb.2017.08.079
  13. Khadka DB, Shirai Y, Yanagida M, and Miyano K, J. of Materials Chemistry 2019; C. 7: 8335-8343. https://doi.org/10.1039/C7TC02822A
  14. Achoi MF, Soga T, Rusop M, and Abdullah S, Curr. Nanomater. 2021; 6: 1-6. https://doi.org/10.2174/2405461506666210412153511
  15. Achoi MF, Noman MAA, Kato S, Kishi N, and Soga T, Materialia 2021; 16: 101077. https://doi.org/10.1016/j.mtla.2021.101077
  16. Achoi MF, Aiba S, Kato S, Kishi N, and Soga T, Mater. Lett. X. 2021; 12: 100096. https://doi.org/10.1016/j.mlblux.2021.100096
  17. Matiur RM, Kato S, and Soga T, J. Mater. Sci. Mater. Electron. 2021; 32: 18342-18350. https://doi.org/10.1007/s10854-021-06375-7
  18. Ünlü F, Kulkarni A, Lê AK, Bohr C, Bliesener A, Öz SD, Jena AK, Ando Y, Miyasaka T, Kirchartz T, and Mathur S, J. Mater. Res. 2021; 36: 1794-1804. https://doi.org/10.1557/s43578-021-00155-z
  19. Eckhardt K, Bon V, Getzschmann J, Grothe J, Wisser FM, and Kaskel S, Chem. Commun. 2016; 52: 3058-3060. https://doi.org/10.1039/C5CC10455F
  20. Abulikemu M, Sam OC, Miao X, Alarousu E, Murali B, Ndjawa GON, Barbé C, Labban AE, Amassian A, and Gobbo SD, J. Mater. Chem. A. 2016; 4: 12504-12515. https://doi.org/10.1039/C6TA04657F
  21. Sanders S, Stümmler D, Pfeiffer P, Ackermann N, Simkus G, and Heuken M, Baumann PK, Vescan A, and Kalish H, Phys. Status Solidi A. 2018; 23: 1800409. https://doi.org/10.1002/pssa.201800409
  22. Stümmler D, Sanders S, Mühlenbruch S, Pfeiffer P, Simkus Heuken GM, Vescan A, and Kalisch A, Phys. Status Solidi Appl. Mater. Sci. 2019; 216: 1900169. https://doi.org/10.1002/pssa.201900169
  23. Wang H, Tian J, Jiang K, Zhang Y, Fan H, Huang J, Yang LM, Guan B, and Song Y, RSC Adv. 2017; 7: 43826-43830. https://doi.org/10.1039/C7RA07123J
  24. Shirahata Y, J. Ceram. Soc. Japan. 2020; 128: 298-303. http://doi.org/10.2109/jcersj2.19156
  25. Wang Y, Liu Y, Xu Y, Zhang C, Bao H, and Wang J, Electrochem. Acta. 2020; 329: 135173. https://doi.org/10.1016/j.electacta.2019.135173
  26. Öz S, Hebig JC, Jung E, Singh T, Lepcha A, Olthof S, Flohre J, Gao Y, German R, Loosdrecht PHMV, Meerholz K, Kirchartz T, and Mathur S, Sol. Energy Mater. Sol. Cells. 2016; 158: 195-201. https://doi.org/10.1016/j.solmat.2016.01.035
  27. T. Singh, A. Kulkarni, M. Ikegami, and T. Miyasaka, ACS Appl. Mater. Interfaces. 2016; 8: 14542-14547. https://doi.org/10.1021/acsami.6b02843
  28. Saliba M, Matsui T, Seo JY, Domanski K, Correa-Baena JP, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldt A, and Grätzel M, Energy Environ. Sci. 2016; 9: 1989-1997. https://doi.org/10.1039/C5EE03874J
  29. Ataei M, Adelifard M, and Hosseini SS, J. Electron. Mater. 2021; 50: 571-579. https://doi.org/10.1007/s11664-020-08580-2
  30. Miller NC, and Bernechea M, APL Mater. 2018; 6: 084503. https://doi.org/10.1063/1.5026541
  31. Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, and Huang J, Energy Environ. Sci. 2014; 7: 2619-2623. https://doi.org/10.1039/C4EE01138D