Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 11 (2024)

Black Coloured Glazes with Tetragonal CuCr2O4 Ceramic Pigment as Selective Solar Absorbers for Integral Ceramic Solar Collectors

DOI
https://doi.org/10.31875/2410-2199.2024.11.09
Published
2024-12-30

Abstract

An efficient and low-cost Selective Solar Absorber for integral ceramic solar collectors, based in glazes pigmented with t-CuCr2O4 and Sb modified t-CuCr2O4 pigments, are characterised and evaluated. The basic kinds of industrial glazes (soda lime glass, double firing glaze 1050 ºC and both single firing glazes of 1080 ºC and porcelain glaze of 1190 ºC) have been checked and characterised by CIEL*a*b* colour, UV-Vis-NIR diffuse reflectance spectra, bandgap measurements, SEM-EDS analysis and solar absorbance spectra. The characteristics of the black powders (L*a*b* and diffuse reflectance spectra with a deviation from the carbon black ΔE*=20.3 and 22.3 respectively) are improved in 0.5 wt% addition of pigments in soda lime glass (ΔE*=6.1 and 9.9 respectively) and in 5 wt% glazed in porcelain glaze 1190 °C (ΔE*=12.0 and 18.4 respectively) which can be considered as low-cost selective solar absorbers (SSA) for integral solar absorber collectors.

References

  1. Yang H., Wang Q., Huang Y., Feng J., Ao X., Hu M., Pei G., Spectral optimization of solar selective absorbing coating for parabolic trough receiver, Energy, 2019; 183: 639-650. https://doi.org/10.1016/j.energy.2019.06.090
  2. Tena M.A., Mestre A., García A., Sorlí S., Monrós G., Synthesis of Gray Ceramic Pigments with Rutile Structure from Alkoxides, Journal of Sol-Gel Science and Technology, 2003; 26: 813-816. https://doi.org/10.1023/A:1020743531408
  3. CPMA Classification and chemical description of the complex inorganic color pigments, fourth ed. Alexandria, Dry Color Manufaturers Association, 2010.
  4. Yang Y., Cao S., Xu J., Cai B., All-ceramic solar collectors, Ceramics International, 2013; 39: 6009-6012. https://doi.org/10.1016/j.ceramint.2013.01.011
  5. Shanker V., Holloway P.H., Electrodeposition of black chrome selective solar absorber coatings with improved thermal stability, Thin Solid Films 1985; 127: 181-189. https://doi.org/10.1016/0040-6090(85)90189-0
  6. Roberts D.E., Forbes A., An analytical expression for the instantaneous efficiency of a flat plate solar water heater and the influence of absorber plate absorptance and emittance, Solar Energy, 2012; 86: 1416-1427. https://doi.org/10.1016/j.solener.2012.01.032
  7. Kennedy C.E., Review of Mid- to High-Temperature Solar Selective Absorber Materials, 2002. https://doi.org/10.2172/15000706
  8. Kuhn, T. S. (1978). Black-Body Theory and the Quantum Discontinuity. Oxford University Press. ISBN 0-19-502383-8
  9. Suchomel M.R., Shoemaker D.P., Ribaud L., Kemei M.C., Seshadri R. Spin-induced symmetry breaking in orbitally ordered NiCr2O4 and CuCr2O4, Physical Review, 2012; B 86: 054406. https://doi.org/10.1103/PhysRevB.86.054406
  10. Acharyya S.S., Ghosh S., Tiwari R., Sarkar B., Singha R.K., Pendem C., Sasaki T., Bal R., Preparation of the CuCr2O4 Spinel Nanoparticles Catalyst for Selective Oxidation of Toluene to Benzaldehyde, Green Chem., 2014; 16: 2500-2508. https://doi.org/10.1039/C3GC42369G
  11. Ma P., Geng Q., Gao X., Yang S., Liu G., CuCr2O4 Spinel Ceramic Pigments Synthesized by Sol-Gel Self-Combustion Method for Solar Absorber Coatings, Journal of Materials Engineering and Performance, 2016; 25,7: 2814-2823. https://doi.org/10.1007/s11665-016-2143-z
  12. Paul B., Bhuyan B., Purkayastha D.D., Dhar S. S., Behera S., Facile synthesis of spinel CuCr2O4 nanoparticles and studies of their photocatalytic activity in degradation of some selected organic dyes, Journal of Alloys and Compounds 2015; 648: 629-635. https://doi.org/10.1016/j.jallcom.2015.07.012
  13. Monrós G. (2014), Pigment, Ceramic in Encyclopedia of Color Science and Technology, Ronnier Luo ed., Springer, New York. http: //www.springerreference.com/docs/html/chapterdbid/348055.html.
  14. Monrós G. (2021), Scheelite and Zircon: Brightness, Color and NIR Reflectance in Ceramics, Nova Scienc Publishers, New York, ISBN: 978-1-53619-332-9
  15. ACGIH (American Conference of Governmental Industrial Hygienists), https: //www.acgih.org/science/tlv-bei-guidelines/tlv-chemical-substances-introduction/
  16. Zemnukhova L.A., Panasenko A.E., A novel composite material based on antimony(III) oxide and amorphous silica, Journal of Solid State Chemistry 2013; 201: 9-12. https://doi.org/10.1016/j.jssc.2013.02.005
  17. CIE Comission International de l´Eclairage, Recommendations on Uniform Color Spaces, Colour Difference Equations, Psychometrics Colour Terms. Suplement nº2 of CIE Pub. Nº15 (E1-1.31) 1971, Bureau Central de la CIE, Paris (1978).
  18. Munsell, A.H. (1915), Atlas of the Munsell color system, Malden, Mass., Wadsworth, Howland & Co., inc. Printers. https://doi.org/10.5479/sil.129262.39088002718880
  19. Panasenkoa A.E., Zemnukhovaa L.A., Barinov N.N., Morphology and Optical Properties of Sb2O3. Inorganic Materials, 2010; 46,4: 389-392. https://doi.org/10.1134/S0020168510040126
  20. Amador J., Gutierrez Puebla E., Monge, M.A., Rasines I., Ruiz Valero C., Diantimony Tetraoxides Revisited. Inorganic Chemistry, 1988): 27,8: 1367-1370. https://doi.org/10.1021/ic00281a011
  21. Shannon, R. D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. 1976; A32: 751. https://doi.org/10.1107/S0567739476001551
  22. Monrós G., Cerro S., Badenes J.A., Llusar M.I., Black Cool Pigments for Urban Heat Island (UHI) Control: from Cr-Hematite to Mn-Melilite, Journal of Solar Energy Research Updates, 2021; 8: 27-44. https://doi.org/10.31875/2410-2199.2021.08.4
  23. Kendrick E., Kirk CJ., Dann S.E., Structure and colour properties in the Egyptian Blue Family, M1-xM’xCuSi4O10, as a function of M, M’ where M, M’=Ca, Sr and Ba. Dyes Pigm 2007: 73: 13-18. https://doi.org/10.1016/j.dyepig.2005.10.006
  24. Peng I., Hills-Kimball K., Miñana Lovelace I., Wang J., Rios M., Chen O., Wang L., Exploring the Colors of Copper-Containing Pigments, Copper (II) Oxide and Malachite, and Their Origins in Ceramic Glazes, Colorants 2022; 1(4): 376-387. https://doi.org/10.3390/colorants1040023
  25. Verger, L., Olivier D., Rousse, G., Cotte, M., Cormier L, The Stability of Gahnite Doped with Chromium Pigments in Glazes from the French Manufacture of Sèvres. Journal of the American Ceramic Society, 2016; 100(1): 86-95. https://doi.org/10.1111/jace.14452
  26. Verger, L.; Olivier D.; Rousse, Cormier L, G., Reactivity of chromium-based pigments in a porcelain glaze, C. R. Physique 19 (2018) 589-598. https://doi.org/10.1016/j.crhy.2018.09.008
  27. Zhang B, Zhu J., Shi P., Wang F., Wang J., Ren Z., Achieving tunable sky-blue copper glaze and coloring mechanism by the introduction of phosphorus. Journal of the European Ceramic Society 2019; 39,5: 1925-1931. https://doi.org/10.1016/j.jeurceramsoc.2019.01.025
  28. Kaufmann J., Rüssel C., Thermodynamics of the Cu+/Cu2+-redox equilibrium in alumosilicate melts, J. Non-Cryst. Solids 2010; 356(33-34): 1615-1619. https://doi.org/10.1016/j.jnoncrysol.2010.06.032
  29. Ali A., Disher I., The devitrification kinetics of transparent silica glass prepared by gel-casting method, Revistamateria, 2019: 24(1): 1-9. https://doi.org/10.1590/s1517-707620190001.0654
  30. Monrós G., LLusar M.I., Badenes J.A., Sol-Gel ceramic glazes with photocatalytic activity, Journal of Sol-Gel Science and Technology, 2022: 102(3) 535-549. (2022) 102: 535-549. https://doi.org/10.1007/s10971-022-05787-z