Grain boundaries (GBs) play a major role in determining the device performance of in particular polycrystalline thin-film solar cells. Hydrogen has traditionally been applied to passivate defects at GBs. However, hydrogenated films are subject to light-induced degradation effects. In this study, we took a novel approach to passivating GBs in multicrystalline silicon (mc-Si) wafers with small polar molecules. We found an excellent correlation between the grain misorientation, electrical resistance across GBs, and passivation effectiveness. In particular, the charge transport across GBs was greatly enhanced after the wafers were properly treated in our polar molecule solutions; the sheet resistance can be reduced by up to more than one order for large-angle random GBs. The results were explained to be due to the effective charge neutralization and passivation of polar molecules on localized charge states at GBs. These findings may help us achieve high-quality materials at low cost for high-efficiency solar cells by enhancing carrier transport and minimizing carrier recombination.
References
Schropp REI, Carius R, Beaucarne G. Amorphous silicon, microcrystalline silicon and thin-film polycrystalline silicon solar cells. Mrs Bull 2007; 32: 219-224. http://dx.doi.org/10.1557/mrs2007.25
Chen J, Yang D, Xi Z, Sekiguchi T. Recombination activity of Σ3 boundaries in boron-doped multicrystalline silicon: Influence of iron contamination. Journal of Applied Physics 2005; 97: 033701. http://dx.doi.org/10.1063/1.1836009
Bertoni MI, Hudelson S, Newman BK, Fenning DP, Dekkers HFW, Cornagliotti E, et al. Influence of defect type on hydrogen passivation efficacy in multicrystalline silicon solar cells. Progress in Photovoltaics: Research and Applications 2011; 19: 187-191. http://dx.doi.org/10.1002/pip.1008
Dimassi W, Derbali L, Bouaicha M, Bessais B, Ezzaouia H. Two-dimensional LBIC and Internal-Quantum-Efficiency investigations of grooved grain boundaries in multicrystalline silicon solar cells. Solar Energy 2011; 85: 350-355. http://dx.doi.org/10.1016/j.solener.2010.11.014
Honda S, Mates T, Rezek B, Fejfar A, Kočka J. Microscopic study of the H2O vapor treatment of the silicon grain boundaries. Journal of Non-Crystalline Solids 2008; 354: 2310-2313. http://dx.doi.org/10.1016/j.jnoncrysol.2007.09.107
Seager CH, Ginley DS. Passivation of grain boundaries in polycrystalline silicon. Applied Physics Letters 1979; 34: 337- 340. http://dx.doi.org/10.1063/1.90779
Carnel L, Gordon I, Van Nieuwenhuysen K, Van Gestel D, Beaucarne G, Poortmans J. Defect passivation in chemical vapour deposited fine-grained polycrystalline silicon by plasma hydrogenation. Thin Solid Films 2005; 487: 147-151. http://dx.doi.org/10.1016/j.tsf.2005.01.081
Dekkers HFW, Carnel L, Beaucarne G. Carrier trap passivation in multicrystalline Si solar cells by hydrogen from SiN:H layers. Applied Physics Letters 2006; 89: 013508. http://dx.doi.org/10.1063/1.2219142
Darwiche S, Nikravech M, Morvan D, Amouroux J, Ballutaud D. Effects of hydrogen plasma on passivation and generation of defects in multicrystalline silicon. Solar Energy Materials and Solar Cells 2007; 91:195-200. http://dx.doi.org/10.1016/j.solmat.2006.08.008
Nickel NH, Yin A, Fonash SJ. Influence of hydrogen and oxygen plasma treatments on grain boundary defects in polycrystalline silicon. Applied Physics Letters 1994; 65: 3099. http://dx.doi.org/10.1063/1.112449
Rajesh C, Pramod MR, Patil S, Mahamuni S, More S, Dusane RO, et al. Reduction in surface recombination through hydrogen and 1-heptene passivated silicon nanocrystals film on silicon solar cells. Solar Energy 2012; 86: 489-495. http://dx.doi.org/10.1016/j.solener.2011.10.033
Bousbih R, Dimassi W, Haddadi I, Ben Slema S, Rava P, Ezzaouia H. Silicon lifetime enhancement by SiNx:H antireflective coating deposed by PECVD using SiH4 and N2 reactive gas. Solar Energy 2012; 86: 1300-1305. http://dx.doi.org/10.1016/j.solener.2012.01.021
Banerjee S, Sundaresan R, Shichijo H, Malhi S. Hot-electron degradation of n-channel polysilicon MOSFETs. IEEE Transactions on Electron Devices 1988; 35: 152-157. http://dx.doi.org/10.1109/16.2434
Nickel NH, Jackson WB, Johnson NM. Light-induced creation of metastable paramagnetic defects in hydrogenated polycrystalline silicon. Physical Review Letters 1993; 71: 2733-2736. http://dx.doi.org/10.1103/PhysRevLett.71.2733
Saad A, Mazanik A, Fedotov A, Partyka J, Węgierek P, Żukowski P. Influence of low-energy ion-beam treatment by hydrogen on electrical activity of grain boundaries in polycrystalline silicon. Vacuum 2005; 78: 269-272. http://dx.doi.org/10.1016/j.vacuum.2005.01.037
Honda S, Mates T, Ledinský M, Fejfar A, Kočka J, Yamazaki T, et al. Defects generation by hydrogen passivation of polycrystalline silicon thin films. Solar Energy 2006; 80: 653- 657. http://dx.doi.org/10.1016/j.solener.2005.10.013
Huang-Chung C, Fang-Shing W, Huang CY. Effects of NH3 plasma passivation on N-channel polycrystalline silicon thinfilm transistors. IEEE Transactions on Electron Devices 1997; 44: 64-68. http://dx.doi.org/10.1109/16.554793
Chhabra B, Bowden S, Opila RL, Honsberg CB. High effective minority carrier lifetime on silicon substrates using quinhydrone-methanol passivation. Applied Physics Letters 2010; 96: 063502. http://dx.doi.org/10.1063/1.3309595
Chhabra B, Weiland C, Opila RL, Honsberg CB. Surface characterization of quinhydrone–methanol and iodine– methanol passivated silicon substrates using X-ray photoelectron spectroscopy. physica status solidi (a) 2011; 208: 86-90. http://dx.doi.org/10.1002/pssa.201026101
Liu FD, Jiang CS, Guthrey H, Johnston S, Romero MJ, Gorman BP, et al. Optical response of grain boundaries in upgraded metallurgical-grade silicon for photovoltaics. Solar Energy Materials and Solar Cells 2011; 95: 2497-2501. http://dx.doi.org/10.1016/j.solmat.2011.04.039
Regan W, Byrnes S, Gannett W, Ergen O, Vazquez-Mena O, Wang F, et al. Screening-Engineered Field-Effect Solar Cells. Nano Letters 2012; 12: 4300-4304. http://dx.doi.org/10.1021/nl3020022
Zecca A, Chiari L, Sarkar A, Lima MAP, Bettega MHF, Nixon KL, et al. Positron scattering from formic acid. Physical Review A 2008; 78: 042707. http://dx.doi.org/10.1103/PhysRevA.78.042707
Kebarle P, Haynes RM, Collins JG. Competitive solvation of the hydrogen ion by water and methanol molecules studied in the gas phase. Journal of the American Chemical Society 1967; 89: 5753-5757. http://dx.doi.org/10.1021/ja00999a003
Wright D, Caldwell R, El-Shall MS. Vapor phase homogeneous nucleation of acetonitrile: the effect of dipole-- dipole interaction. Chemical Physics Letters 1991; 176: 46- 54. http://dx.doi.org/10.1016/0009-2614(91)90008-W
Bhattacharyya D, Shah D, Kissick K, Ghorpade A, Hannah R. Pervaporation of alcohol-water and dimethylformamide-water mixtures using hydrophilic zeolite NaA membranes: mechanisms and experimental results. Journal of Membrane Science 2000; 179: 185-205. http://dx.doi.org/10.1016/S0376-7388(00)00515-9
Schroder DK. Semiconductor Material and Device Characterization. 2nd ed: Wiley; 1998.
Nelson J. The Physics of Solar Cells: Imperial College Press 2002.
Tsurekawa S, Kido K, Watanabe T. Interfacial state and potential barrier height associated with grain boundaries in polycrystalline silicon. Materials Science and Engineering aStructural Materials Properties Microstructure and Processing 2007; 462: 61-67. http://dx.doi.org/10.1016/j.msea.2006.02.471
Choi JW, Kulshreshtha C, Kennedy GP, Kwon JH, Jung S-H, Chae M. Solution-processed bulk heterojunction organic solar cells with high polarity small molecule sensitizer. Solar Energy Materials and Solar Cells 2011; 95: 2069-2076. http://dx.doi.org/10.1016/j.solmat.2011.02.018